K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2018

1) Ta có:
\(\dfrac{a}{a+b}\)=\(\dfrac{c}{c+d}\)
=>a.(c+d) = c.(a+b)
a.c+a.d = a.c+b.d
Do đó a.d=b.d
=>\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)( đpcm)

Câu 2: 

Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\dfrac{3a+2c}{3b+2d}=\dfrac{3bk+2dk}{3b+2d}=k\)

\(\dfrac{-5a+3c}{-5b+3d}=\dfrac{-5bk+3dk}{-5b+3d}=k\)

=>\(\dfrac{3a+2c}{3b+2d}=\dfrac{-5a+3c}{-5b+3d}\)

b: \(\dfrac{a^2}{b^2}=\dfrac{b^2k^2}{b^2}=k^2\)

\(\dfrac{2c^2-ac}{2d^2-bd}=\dfrac{c\left(2c-a\right)}{d\left(2d-b\right)}=\dfrac{dk}{d}\cdot\dfrac{2dk-bk}{2d-b}=k^2\)

=>\(\dfrac{a^2}{b^2}=\dfrac{2c^2-ac}{2d^2-bd}\)

31 tháng 10 2019

Đề phải thêm là \(\frac{a}{b}=\frac{c}{d}\) nhé.

a)

b)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

(1)

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{a+2c}{b+2d}=\frac{a+c}{b+d}\)

Chúc bạn học tốt!

2 tháng 7 2023

a.d = b.c ⇒ \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{5b}{5d}\) = \(\dfrac{3a}{3c}=\dfrac{2b}{2d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{2a}{2c}=\dfrac{5b}{5d}=\dfrac{2a+5b}{2c+5d}\) (1)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{3a}{3c}=\dfrac{2b}{2d}=\dfrac{3a-2b}{2c-2d}\) (2)

Từ (1) và(2) ta có:

\(\dfrac{2a+5b}{2c+5d}\) =  \(\dfrac{3a-2b}{3c-2d}\)(đpcm)

 

 

 

 

2 tháng 7 2023

a.d = b.c ⇒ \(\dfrac{a}{c}=\dfrac{b}{d}\)  ⇒ \(\dfrac{a.b}{c.d}\) = \(\dfrac{a^2}{c^2}\) = \(\dfrac{b^2}{d^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a.b}{c.d}=\dfrac{a^2}{c^2}\) = \(\dfrac{b^2}{d^2}\) = \(\dfrac{a^2+b^2}{c^2+d^2}\) (đpcm)

 

 

15 tháng 10 2018

Mình hướng dẫn thôi nhé:

Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=kb\\c=kd\end{matrix}\right.\) . Sau đó thế vào biểu thức tính rồi suy ra đpcm

Ví dụ bài đầu tiên: Thế a = kb; c=kd vào biểu thức,ta có:

\(\dfrac{a}{a+b}=\dfrac{kb}{kb+b}=\dfrac{kb}{b\left(k+1\right)}=\dfrac{k}{k+1}\) (1)

\(\dfrac{c}{c+d}=\dfrac{kd}{kd+d}=\dfrac{kd}{d\left(k+1\right)}=\dfrac{k}{k+1}\) (2)

Từ (1) và (2) ,ta có đpcm: \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

Các bài sau làm tương tự:Thế a=kb ; c=kd vào biểu thức rồi tính từng vế . Sau đó so sánh hai vế. Thấy hai vế = nhau => đpcm

16 tháng 4 2017

a)a/b=c/d=a+b/c+d=a-b/c-d(tc day ti so bang nhau)

=>a+b/a-b=c+d/c-d

b)a/b=c/d=>5a/5b=2c/2d=5a+2c/5c+2d(*) va a/b=4c/4d=a-4c/c-4d(**)

c)a/b=c/d=a+b/c+d=>(a/b)^2=ab/cd=(a+b/c+d)^2

6 tháng 10 2019

\(a,\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

có : \(\frac{a}{a+b}=\frac{bk}{bk+b}=\frac{bk}{b\left(k+1\right)}=\frac{k}{k+1}\)

\(\frac{c}{c+d}=\frac{dk}{dk+d}=\frac{dk}{d\left(k+1\right)}=\frac{k}{k+1}\)

\(\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)

cứ đặt dạng tổng quát rồi làm tương tự