Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ đẳng thức x : y : z = a : b : c
=> \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow\hept{\begin{cases}x=ak\\y=bk\\z=ck\end{cases}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z=\frac{ak+bk+ck}{a+b+c}=k\)
=> x + y + z = a + b + c = k = 1
Khi đó : (x + y + z)2 = 12 = 1
x2 + y2 + z2 = (ak)2 + (bk)2 + (ck)2
= a2.k2 + b2.k2 + c2.k2
= k2.(a2 + b2 + c2)
= k2 = 12 = 1
=> x + y + z = x2 + y2 + z2 (đpcm)
Ta có:\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}\)\(\Rightarrow\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{\left(x+y+z\right)^2}{\left(a+b+c\right)^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
\(\Rightarrow\frac{\left(x+y+z\right)^2}{\left(a+b+c\right)^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{\left(x+y+z\right)^2}{1^2}=\frac{x^2+y^2+z^2}{1}\)
\(\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\)
Ta có: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\Rightarrow\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\)
\(\Rightarrow\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\left(x+y+z\right)^2\left(1\right)\)
Lại áp dụng tính chất của dãy tỉ số = nhau có:
\(\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\left(2\right)\)
Từ (1) và (2) => (x + y + z)2 = x2 + y2 + z2 (đpcm)
minh mới giải được phần đầu thui nhe!!!!!!!
Ta có: a+b+c=a^2+b^2+c^2=1
Vì x:y:z=a:b:c nên ta có:
x/a=y/b=z/c
Áp dcụng công thức của dãy tỉ số bằng nhau ta có:
x/a=y/b=z/c=(x+y+z)/(a+b+c)=(x+y+z)/1=x+y+z
Bạn xem lời giải trong câu hỏi tương tự dưới đây nhé:
Câu hỏi của Võ Tường Khanh - Toán lớp 7 - Học toán với OnlineMath
Vì \(x:y:z=a:b:c\)
Nên nếu \(x=ka\Rightarrow y=kb;z=kc\)
Khi đó:
\(\left(x+y+z\right)^2=\left[k\left(a+b+c\right)\right]^2=k^2\)
\(x^2+y^2+z^2=k^2\left(a^2+b^2+c^2\right)=k^2\)
\(\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\left(đpcm\right)\)