Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cô si nhưng tình huống này ta bình phương hai vế trước.
Đặt \(A=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\), khi đó ta được:
\(A^2=\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)^2\)
\(=\frac{x^4}{y^2}+\frac{y^4}{z^2}+\frac{z^4}{x^2}+2\left(\frac{x^2y}{z}+\frac{y^2z}{x}+\frac{z^2x}{y}\right)\)
Ta chú ý cách ghép cặp sau:
\(\frac{x^4}{y^2}=\frac{x^2y}{z}+\frac{x^2y}{x}+z^2\ge4x^2\)
\(\frac{y^4}{z^2}+\frac{y^2z}{x}+\frac{y^2z}{x}+x^2\ge4y^2\)
\(\frac{z^4}{x^2}=\frac{z^2x}{y}+\frac{z^2x}{y}+y^2\ge4z^2\)
Cộng theo vế các bất đẳng thức trên ta được:
\(A^2+\left(x^2+y^2+z^2\right)\ge4\left(x^2+y^2+z^2\right)\Leftrightarrow A^2\ge9\Leftrightarrow A\ge3\)hay:
\(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\ge3\)
Vậy bất đẳng thức đã được chứng minh, đẳng thức xảy ra khi và chỉ khi \(a=b=c=1\)
Ta có BĐT sau: \(\sqrt{\frac{1+a^2}{b+c}}\ge\frac{a+1}{\sqrt{2\left(b+c\right)}}\)(*)
Thật vậy, với a,b,c dương, ta có: (*)\(\Leftrightarrow\frac{1+a^2}{b+c}\ge\frac{\left(a+1\right)^2}{2\left(b+c\right)}\)
\(\Leftrightarrow\frac{1+a^2}{b+c}\ge\frac{\frac{\left(a+1\right)^2}{2}}{b+c}\Leftrightarrow1+a^2\ge\frac{a^2}{2}+a+\frac{1}{2}\)
\(\Leftrightarrow\frac{\left(a-1\right)^2}{2}\ge0\)(đúng với mọi \(a\inℝ\))
Tương tự, ta có: \(\sqrt{\frac{1+b^2}{c+a}}\ge\frac{b+1}{\sqrt{2\left(c+a\right)}}\)(2); \(\sqrt{\frac{1+c^2}{a+b}}\ge\frac{c+1}{\sqrt{2\left(a+b\right)}}\)(3)
Cộng theo vế của các BĐT (*), (2), (3), ta được:
\(\Sigma\sqrt{\frac{1+a^2}{b+c}}\ge\Sigma\frac{a+1}{\sqrt{2\left(b+c\right)}}\ge\Sigma\frac{a+1}{\frac{\left(b+c\right)+2}{2}}=\Sigma\frac{2\left(a+1\right)}{b+c+2}\)
\(=\Sigma\left(\frac{2a^2}{ab+ca+2a}+\frac{2}{b+c+2}\right)\)
\(\ge\frac{\left(a+b+c\right)^2}{\left(ab+bc+ca\right)+\left(a+b+c\right)}+\frac{9}{a+b+c+3}\)(Theo BĐT Bunhiacopxki dạng phân thức)
\(\ge\frac{\left(a+b+c\right)^2}{\frac{\left(a+b+c\right)^2}{3}+\left(a+b+c\right)}+\frac{9}{a+b+c+3}\)
\(\ge\frac{3\left(a+b+c\right)}{a+b+c+3}+\frac{9}{a+b+c+3}=\frac{3\left(a+b+c+3\right)}{a+b+c+3}=3\)
Đẳng thức xảy ra khi a = b = c = 1
Ta viết lại bất đẳng thức cần chứng minh thành\(\sqrt{\frac{2\left(a+3\right)}{a+bc}}+\sqrt{\frac{2\left(b+3\right)}{b+ca}}+\sqrt{\frac{2\left(c+3\right)}{c+ab}}\ge6\)
Theo giả thiết, ta có a + b + c = 3 nên\(\sqrt{\frac{2\left(a+3\right)}{a+bc}}=\sqrt{\frac{2\left(a+a+b+c\right)}{a+bc}}=\sqrt{2\left(\frac{a+b}{a+bc}+\frac{a+c}{a+bc}\right)}\)\(\ge\sqrt{\frac{a+b}{a+bc}}+\sqrt{\frac{a+c}{a+bc}}\)(Áp dụng bất đẳng thức \(\sqrt{2\left(x+y\right)}\ge\sqrt{x}+\sqrt{y}\))
Hoàn toàn tương tự, ta được: \(\sqrt{\frac{2\left(b+3\right)}{b+ca}}\ge\sqrt{\frac{b+a}{b+ca}}+\sqrt{\frac{b+c}{b+ca}}\); \(\sqrt{\frac{2\left(c+3\right)}{c+ab}}\ge\sqrt{\frac{c+a}{c+ab}}+\sqrt{\frac{c+b}{c+ab}}\)
Cộng theo vế ba bất đẳng thức trên, ta được: \(\sqrt{\frac{2\left(a+3\right)}{a+bc}}+\sqrt{\frac{2\left(b+3\right)}{b+ca}}+\sqrt{\frac{2\left(c+3\right)}{c+ab}}\)\(\ge\sqrt{\frac{a+b}{a+bc}}+\sqrt{\frac{a+c}{a+bc}}+\sqrt{\frac{b+a}{b+ca}}+\sqrt{\frac{b+c}{b+ca}}+\sqrt{\frac{c+a}{c+ab}}+\sqrt{\frac{c+b}{c+ab}}\)
Áp dụng bất đẳng thức Bunyakovsky dạng phân thức, ta được: \(\sqrt{\frac{a+b}{a+bc}}+\sqrt{\frac{a+b}{b+ca}}\ge\frac{4\sqrt{a+b}}{\sqrt{a+bc}+\sqrt{b+ca}}\ge\frac{2\sqrt{2}\sqrt{a+b}}{\sqrt{a+bc+b+ca}}=\frac{2\sqrt{2}}{\sqrt{c+1}}\)(*)
Tương tự ta có: \(\sqrt{\frac{b+c}{b+ca}}+\sqrt{\frac{b+c}{c+ab}}\ge\frac{2\sqrt{2}}{\sqrt{a+1}}\)(**) ; \(\sqrt{\frac{c+a}{c+ab}}+\sqrt{\frac{c+a}{a+bc}}\ge\frac{2\sqrt{2}}{\sqrt{b+1}}\)(***)
Cộng theo vế ba bất đẳng thức (*), (**) và (***) suy ra \(\sqrt{\frac{a+b}{a+bc}}+\sqrt{\frac{a+c}{a+bc}}+\sqrt{\frac{b+a}{b+ca}}+\sqrt{\frac{b+c}{b+ca}}+\sqrt{\frac{c+a}{c+ab}}+\sqrt{\frac{c+b}{c+ab}}\)\(\ge\frac{2\sqrt{2}}{\sqrt{c+1}}+\frac{2\sqrt{2}}{\sqrt{a+1}}+\frac{2\sqrt{2}}{\sqrt{b+1}}\)
Do đó ta có: \(\sqrt{\frac{2\left(a+3\right)}{a+bc}}+\sqrt{\frac{2\left(b+3\right)}{b+ca}}+\sqrt{\frac{2\left(c+3\right)}{c+ab}}\ge\frac{2\sqrt{2}}{\sqrt{c+1}}+\frac{2\sqrt{2}}{\sqrt{a+1}}+\frac{2\sqrt{2}}{\sqrt{b+1}}\)
Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{2\sqrt{2}}{\sqrt{c+1}}+\frac{2\sqrt{2}}{\sqrt{a+1}}+\frac{2\sqrt{2}}{\sqrt{b+1}}\ge6\)hay \(\frac{1}{\sqrt{c+1}}+\frac{1}{\sqrt{a+1}}+\frac{1}{\sqrt{b+1}}\ge\frac{3}{\sqrt{2}}\)
Thật vậy, áp dụng bất đẳng thức Cauchy – Schwarz ta được \(\frac{1}{\sqrt{c+1}}+\frac{1}{\sqrt{a+1}}+\frac{1}{\sqrt{b+1}}\ge\frac{9}{\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}}\ge\frac{9}{\sqrt{3\left(a+b+c+3\right)}}=\frac{3}{\sqrt{2}}\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi a = b = c = 1
jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
Theo BĐT AM-GM:
\(\sqrt{\frac{a}{b+c-a}}=\frac{a}{\sqrt{a\left(b+c-a\right)}}\ge\frac{2a}{b+c}\)
Tương tự 2 BĐT còn lại và cộng theo vế kết hợp BĐT Nesbitt ta thu được:
\(VT\ge2\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\ge2.\frac{3}{2}=3\)
Do đẳng thức không xảy ra nên VT >3 (đpcm).
Cái này không khó :v
Áp dụng BĐT Cauchy-Schwarz dạng Engel, ta có:
\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{a+c}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)
Face khác ;v, theo AM-GM, ta có
\(\dfrac{a+b+c}{2}\ge\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\dfrac{6}{2}=3\)
Vậy ta có đpcm. Đẳng thức xảy ra khi a=b=c=2
Ta có :
\(\frac{a^2}{a+b}=\frac{a^2+ab-ab}{a+b}=a-\frac{ab}{a+b}\le a-\frac{ab}{2\sqrt{ab}}=a-\frac{\sqrt{ab}}{2}\)(1)
Tương tự \(\hept{\begin{cases}\frac{b^2}{b+c}\le b-\frac{\sqrt{bc}}{2}\\\frac{c^2}{a+c}\le c-\frac{\sqrt{ac}}{2}\end{cases}}\)(2)
Nhhan (1);(2) lại ta được
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{a+c}\ge a+b+c-\frac{\sqrt{ab}+\sqrt{ac}+\sqrt{bc}}{2}=a+b+c-3\)
Ta lại có : \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{bc}=6\) (tự cm)
\(\Rightarrow\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{a+c}\ge6-3=3\)(đpcm)