\(a+b+c=3;a,b,c\ge0\)

Chứng minh: \(S=\sqrt{a^2+b^2}+\sqrt...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2020

Áp dụng bđt thức svacxo: \(\frac{x_1^2}{y_1}+\frac{x_2^2}{y_2}\ge\frac{\left(x_1+x_2\right)^2}{y_1+y_2}\)  (1)

CM bđt đúng: Áp dụng bđt bunhiacopxki, ta có: (với y1; y2 > = 0)

\(\left[\left(\frac{x_1}{\sqrt{y_1}}\right)^2+\left(\frac{x_2}{\sqrt{y_2}}\right)^2\right]\left[\left(\sqrt{y_1}\right)^2+\left(\sqrt{y_2}\right)^2\right]\ge\left(\frac{x_1}{\sqrt{y_1}}.\sqrt{y_1}+\frac{x_2}{\sqrt{y_2}}.\sqrt{y_2}\right)^2\)

\(\ge\left(x_1+x_2\right)^2\) => \(\frac{x_1^2}{y_1}+\frac{x_2^2}{y_2}\ge\frac{\left(x_1+x_2\right)^2}{y_1+y_2}\) (đpcm)

Ta có: \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\) => \(\sqrt{a^2+b^2}\ge\sqrt{\frac{\left(a+b\right)^2}{2}}=\frac{a+b}{\sqrt{2}}\)(Vì a,b > = 0) (1)

CMTT: \(\sqrt{b^2+c^2}\ge\frac{b+c}{\sqrt{2}}\) (2)

\(\sqrt{c^2+a^2}\ge\frac{a+c}{\sqrt{2}}\) (3)

Từ (1) ; (2) và (3) ta có:  \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\ge\frac{a+b}{\sqrt{2}}+\frac{b+c}{\sqrt{2}}+\frac{a+c}{\sqrt{2}}\)

\(S\ge\frac{a+b+b+c+c+a}{\sqrt{2}}=\frac{2\left(a+b+c\right)}{\sqrt{2}}=3\sqrt{2}=\sqrt{18}\)(Đpcm)

5 tháng 10 2020

Ta chứng minh BĐT Minkowski: \(\sqrt{m^2+n^2}+\sqrt{p^2+q^2}\ge\sqrt{\left(m+p\right)^2+\left(n+q\right)^2}\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(m^2+n^2\right)+\left(p^2+q^2\right)+2\sqrt{\left(m^2+n^2\right)\left(p^2+q^2\right)}\ge m^2+p^2+2mp+n^2+q^2+2nq\)\(\Leftrightarrow\left(m^2+n^2\right)\left(p^2+q^2\right)\ge\left(mp+nq\right)^2\)(đúng theo BĐT Cauchy-Schwarz)

Áp dụng, ta được: \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\ge\sqrt{\left(a+b\right)^2+\left(b+c\right)^2}+\sqrt{c^2+a^2}\)\(\ge\sqrt{\left(a+b+c\right)^2+\left(b+c+a\right)^2}=\sqrt{3^2+3^2}=\sqrt{18}\)

Đẳng thức xảy ra khi a = b = c = 1

13 tháng 7 2017

2, a, \(a+\dfrac{1}{a}\ge2\)

\(\Leftrightarrow\dfrac{a^2+1}{a}\ge2\)

\(\Rightarrow a^2-2a+1\ge0\left(a>0\right)\)

\(\Leftrightarrow\left(a-1\right)^2\ge0\)( là đt đúng vs mọi a)

vậy...................

13 tháng 7 2017

Câu 1:

\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)

\(=\sqrt{4+5}=3\)

\(M=\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{5-\sqrt{3-2\sqrt{5}+3}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\sqrt{5-\sqrt{5}+1}=\sqrt{6-\sqrt{5}}\)

1 tháng 8 2019

Nguyễn Thu Huyền Chỗ nào có \(\le\) thì chuyển thành \(\ge\) nhé. Thế là ok. Tại mk bấm nhầm leu

30 tháng 7 2019

\(\text{Ta có }:a^2+ab+b^2=\left(a^2+2ab+b^2\right)-ab\\ =\left(a+b\right)^2-ab\overset{BĐT\text{ }Cô-si}{\le}\left(a+b\right)^2-\frac{\left(a+b\right)^2}{4}=\frac{3}{4}\left(a+b\right)^2\\ \Rightarrow\sqrt{a^2+ab+b^2}\le\frac{\sqrt{3}}{2}\left(a+b\right)\)

Tương tự : \(\sqrt{b^2+bc+c^2}\le\frac{\sqrt{3}}{2}\left(b+c\right)\)

\(\sqrt{a^2+ac+c^2}\le\frac{\sqrt{3}}{2}\left(a+c\right)\\ \Rightarrow\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+c^2}+\sqrt{a^2+ac+c^2}\\ \le\frac{\sqrt{3}}{2}\left(a+b\right)+\frac{\sqrt{3}}{2}\left(b+c\right)+\frac{\sqrt{3}}{2}\left(a+c\right)\\= \frac{\sqrt{3}}{2}\left(a+b+b+c+a+c\right)=\sqrt{3}\left(a+b+c\right)=3\sqrt{3}\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}a=b\\b=c\\a=c\\a+b+c=3\end{matrix}\right.\)

\(\Leftrightarrow a=b=c=1\)

3 tháng 7 2018

a) \(a+b-2\sqrt{ab}\ge0\)

<=> \(\left(\sqrt{a}+\sqrt{b}\right)^2\ge0\) (luôn đúng )

=> đpcm

b) \(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\Leftrightarrow\sqrt{\dfrac{a+b}{2}^2}\ge\left(\dfrac{\sqrt{a}+\sqrt{b}}{2}\right)^2\)

<=> \(\dfrac{a+b}{2}\ge\dfrac{a+b+2\sqrt{ab}}{4}\)

<=> \(\dfrac{2a+2b}{4}\ge\dfrac{a+b+2\sqrt{ab}}{4}\Leftrightarrow2a+2b\ge a+b+2\sqrt{ab}\)

<=> \(2a+2b-a-b-2\sqrt{ab}\ge0\)

<=> \(a-2\sqrt{ab}+b\ge0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (luôn đúng)

=> đpcm

3 tháng 7 2018

thanks!!!

11 tháng 10 2018

Ta có \(c\ge\sqrt{ab}\Leftrightarrow c^2\ge ab\Leftrightarrow c^2-ab\ge0\Leftrightarrow c\left(c^2-ab\right)\ge0\Leftrightarrow c^3-abc\ge0\Leftrightarrow\left(c^3-abc\right)\left(a-b\right)\ge0\Leftrightarrow ac^3-a^2bc-bc^3+ab^2c\ge0\Leftrightarrow ab^2c+ac^3\ge a^2bc+bc^3\Leftrightarrow ac\left(b^2+c^2\right)\ge bc\left(a^2+c^2\right)\Leftrightarrow\dfrac{ac}{a^2+c^2}\ge\dfrac{bc}{b^2+c^2}\Leftrightarrow\dfrac{2ac}{a^2+c^2}\ge\dfrac{2bc}{b^2+c^2}\Leftrightarrow1+\dfrac{2ac}{a^2+c^2}\ge1+\dfrac{2bc}{b^2+c^2}\Leftrightarrow\dfrac{a^2+2ac+c^2}{a^2+c^2}\ge\dfrac{b^2+2bc+c^2}{b^2+c^2}\Leftrightarrow\dfrac{\left(a+c\right)^2}{a^2+c^2}\ge\dfrac{\left(b+c\right)^2}{b^2+c^2}\Leftrightarrow\dfrac{a+c}{\sqrt{a^2+c^2}}\ge\dfrac{b+c}{\sqrt{b^2+c^2}}\left(đpcm\right)\)

11 tháng 10 2018

Cần chứng minh

(a + c)²(b² + c²) ≥ (b + c)²(a² + c²)

<=> 2c(a - b)(c² - ab) ≥ 0

Cái này đúng.

15 tháng 5 2018

\(\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+c^2}+\sqrt{c^2+ca+a^2}\)

\(=\sqrt{\frac{1}{4}\left(a-b\right)^2+\frac{3}{4}\left(a+b\right)^2}+\sqrt{\frac{1}{4}\left(b-c\right)^2+\frac{3}{4}\left(b+c\right)^2}+\sqrt{\frac{1}{4}\left(c-a\right)^2+\frac{3}{4}\left(c+a\right)^2}\)

\(\ge\sqrt{\frac{3}{4}\left(a+b\right)^2}+\sqrt{\frac{3}{4}\left(b+c\right)^2}+\sqrt{\frac{3}{4}\left(c+a\right)^2}\)

\(=\sqrt{3}\left(a+b+c\right)\)

15 tháng 5 2018

Ta có bất đẳng thức phụ sau 

\(a^2+ab+b^2\ge\frac{3}{4}.\left(a+b\right)^2\)   (Chứng minh thì biến đổi tương đương là được)

Ta có :

\(\Sigma\sqrt{a^2+ab+b^2}\ge\Sigma\sqrt{\dfrac{3}{4}\left(a+b\right)^2}=\sqrt{3}.\Sigma\dfrac{a+b}{2}=\sqrt{3}\left(a+b+c\right)\)

Đẳng thức xảy ra <=> a = b = c 

11 tháng 8 2018

Hỏi đáp Toán

23 tháng 7 2017

cảm ơn bạn vì đã giúp mình tìm hiểu thêm câu hỏi

28 tháng 7 2017

a) bđt cosi

b) \(\left(\sqrt{a+b}\right)=a+b\)

\(\left(\sqrt{a}+\sqrt{b}\right)^2=a+b+2\sqrt{ab}\)

\(a+b+2\sqrt{ab}>a+b\)

=> đpcm

c) xét hiệu \(a-\sqrt{a}+\frac{1}{4}+b-\sqrt{b}+\frac{1}{4}\ge0\)

d)https://olm.vn/hoi-dap/question/1003405.html

nè ngại làm