K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2019

VÀ a, b c khác 0 nha

?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

ban oi a^2+b^2+c^2= a^2+b^2+c^2 là chuyện đương nhiên mà bạn

22 tháng 12 2019

quên là (a+b+c)2=a2+b2+c2    xin lỗi nha

a/x +b/y +c/z =0 ->ayz+bxz+cxz=0

x/a + y/b + z/c=1 ->(x/a +y/b +z/c)^2=1

x^2/a^2 + y^2/b^2 + z^2/c^2 +2(xy/ab +yz/bc +xz/ac)=1

x^2/a^2 + y^2/b^2 + z^2/c^2 =1- 2* ayz+bxz+cxz/abc=1-2*0=1-0=1 =>ĐPCM

k hộ mik nha

28 tháng 5 2019

#)Giải :

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\rightarrow ayz+bxz+cxy=0\)

\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1-2\frac{ayz+bxz+cxy}{abc}=1-2.0=1\left(đpcm\right)\)

            #~Will~be~Pens~#

3 tháng 7 2015

Do \(a^2+b^2+c^2=5\Rightarrow a^2,b^2,c^2\le5\Rightarrow\left|a\right|;\left|b\right|;\left|c\right|\le\sqrt{5}\)

\(\Rightarrow\left|a\right|;\left|b\right|;\left|c\right|\le2\)

\(\Rightarrow\left|a\right|;\left|b\right|;\left|c\right|\in\left\{0;1;2\right\}\)

Mà \(a+b+c=3\) và \(a^2+b^2+c^2=5=0^2+1^2+2^2\)

\(\text{nên }\left(a,b,c\right)\in\left\{\left(0;1;2\right);\left(0;2;1\right);\left(1;0;2\right);\left(1;2;0\right);\left(2;1;0\right);\left(2;0;1\right)\right\}\)

Với mỗi cặp như vậy, \(\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)=\left(0+2\right)\left(1^2+2\right)\left(2^2+2\right)=36=6^2\)

là số chính phương. 

 

11 tháng 8 2019

\(\hept{\begin{cases}a+b=c+d\Rightarrow\left(a+b\right)^2=\left(c+d\right)^2\Rightarrow a^2+2ab+b^2=c^2+2cd+d^2\\a^2+b^2=c^2+d^2\end{cases}}\)

\(\Rightarrow2ab=2cd\Rightarrow ab=cd\Rightarrow\frac{a}{d}=\frac{b}{c}=k\Rightarrow\hept{\begin{cases}a=dk\\b=ck\end{cases}}\)

Xét \(a^2+b^2=c^2+d^2\Leftrightarrow\left(dk\right)^2+b^2=\left(ck\right)^2+d^2\Leftrightarrow d^2\left(k^2-1\right)=b^2\left(k^2-1\right)\)

\(\Leftrightarrow\left(d^2-b^2\right)\left(k^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}d^2-b^2=0\\k^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}d=\pm b\\k=\pm1\end{cases}}\Rightarrow\orbr{\begin{cases}a=\pm c\\a=\pm d;c=\pm b\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}d^{2005}=b^{2005};a^{2005}=c^{2005}\\a^{2005}=d^{2005};c^{2005}=b^{2005}\end{cases}\Rightarrow\orbr{\begin{cases}a^{2005}+b^{2005}=c^{2005}+d^{2005}\\a^{2005}+b^{2005}=c^{2005}+d^{2005}\end{cases}}}\)

\(\Rightarrow a^{2005}+b^{2005}=c^{2005}+d^{2005}\left(đpcm\right)\)

7 tháng 9 2017
ở trong sách nào đó bạn
8 tháng 7 2019

\(\text{Vì }a^2-b^2=c^2-d^2=1\Leftrightarrow\hept{\begin{cases}a^2=b^2+1\left(1\right)\\d^2=c^2-1\left(2\right)\end{cases}}\)

\(\text{Ta có: }a^2d^2-a^2d^2=0\)

\(\Rightarrow a^2.\left(c^2-1\right)-d^2.\left(b^2+1\right)=0\)

\(\Rightarrow a^2c^2-b^2d^2-a^2-d^2=0\)

\(\Rightarrow a^2c^2-b^2d^2=a^2+d^2\)

Vậy \(a^2c^2-b^2d^2=a^2+d^2\)

17 tháng 10 2019

TL :

Tham khảo tại : https://olm.vn/hoi-dap/detail/226772144064.html

Hok tốt