Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét TS
Có a^3 + b^3 + c^3 - 3abc = a^3 + 3a^2b + 3ab^2 + b^2 + c^3 - 3abc - 3a^2b - 3ab^2 = (a + b)^3 + c^3 - 3ab(a + b + c) = (a + b + c)( (a+b)^2 + (a + b)c + c^2 - 3abc) = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ac)
Rút gọn TS/MS được kết quả = a + b + c = 2009 => điều phải chứng minh
Ta có a3 + b3 + c3 - 3abc
=[ (a+ b)3 + c3 ] - [3ab(a+b) + 3abc] = (a + b+ c)3 - 3(a + b).c(a + b + c) - 3ab.(a + b + c)
= (a + b+ c). [(a + b + c)2 - 3c(a + b) - 3ab]
= (a + b+ c).(a2 + b2 + c2 + 2ab + 2bc + 2ca - 3ac - 3bc - 3ab)
= (a + b + c)(a2 + b2 + c2 - ab - bc - ca)
=> \(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-ac-bc}=a+b+c=2009\)
Vậy.......
Ta có vế trái = (a2+b2+c2−ab−ac−bca2+b2+c2−ab−ac−bc)
(a+b+c)
= \(a^3+ab^2+ac^2-a^2b-a^2c-abc+a^2b+b^3+bc^2-ab^2-abc-b^2c+a^2c+b^2c+c^3-abc-ac^2-bc^2\) =\(a^3+b^3+c^3-3abc\)
=> (a2+b2+c2−ab−ac−bca2+b2+c2−ab−ac−bc)(a+b+c)=a3+b3+c3−3abc (đpcm )
Vậy (a2+b2+c2−ab−ac−bca2+b2+c2−ab−ac−bc)(a+b+c)=a3+b3+c3−3abc
Bài này bạn biến đổi VP sẽ hay hơn .
\(VP=a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=VT\) Vậy , đăng thức được chứng minh .
Câu 1:
- Chứng minh a3+b3+c3=3abc thì a+b+c=0
\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)
\(\Rightarrow\left[\left(a+b\right)^3+c^3\right]-3abc\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow0=0\) Đúng (Đpcm)
- Chứng minh a3+b3+c3=3abc thì a=b=c
Áp dụng Bđt Cô si 3 số ta có:
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)
Dấu = khi a=b=c (Đpcm)
Câu 2
Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=3\cdot\frac{1}{abc}\)
Ta có:
\(\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ac}{b^2}=\frac{abc}{c^3}+\frac{abc}{a^3}+\frac{abc}{b^3}\)
\(=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
\(=abc\cdot3\cdot\frac{1}{abc}=3\)
\(B=\frac{1}{a^2+b^2+c^2}+\frac{4}{2ab+2bc+2ac}+\frac{2007}{ac+bc+ac}\)
\(B\ge\frac{\left(1+2\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}+\frac{2007}{\frac{\left(a+b+c\right)^2}{3}}\)
\(B\ge\frac{9}{\left(a+b+c\right)^2}+\frac{6021}{\left(a+b+c\right)^2}\ge\frac{9}{3^2}+\frac{6021}{3^2}=670\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Ta có :
\(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-ac-bc}\)
\(=\frac{\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-3a^2b-3ab^2-3abc}{a^2+b^2+c^2-ab-ac-bc}\)
\(=\frac{\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-ac-bc}\)
\(=\frac{\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-ac-bc}\)
\(=\frac{\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)}{a^2+b^2+c^2-ab-ac-bc}\)
\(=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)}{a^2+b^2+c^2-ab-ac-bc}\)
\(=a+b+c=2009\)(đpcm)