Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề:
\(S=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(=\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{b}{c+a}+1\right)+\left(\dfrac{c}{a+b}+1\right)-3\)
\(=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)
\(=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)
\(=2001.\dfrac{1}{10}-3\)
\(=200,1-3=197,1\)
Vậy S = 197,1
\(S=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1-3\)
\(S=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}-3\)
\(S=\frac{2001}{b+c}+\frac{2001}{c+a}+\frac{2001}{a+b}-3\)
\(S=2001\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)-3\)
\(S=2001.\frac{1}{10}-3=\frac{1971}{10}\)
1/(a+b) + 1/(b+c) + 1/(c+a)=1/10
<=>(a+b+c)(1/a+b + 1/b+c + 1/c+a)=(a+b+c).1/10
<=>2001.(1/a+b + 1/b+c + 1/c+a)=200,1
<=>2001/a+b + 2001/b+c + 2001/c+a =200,1
<=>a+b+c/a+b + a+b+c/b+c + a+b+c/c+a=200,1
<=>a+b/a+b + c/a+b + b+c/b+c + a/b+c + c+a/c+a + b/c+a
<=>3+ c/a+b + a/b+c + b/c+a=200,1
<=>c/a+b + a/b+c + b/c+a=198,1
Bài 2:
a: \(\dfrac{-1}{5}< 0< \dfrac{1}{1000}\)
b: \(\dfrac{267}{268}< 1< \dfrac{1347}{1343}\)
nên \(-\dfrac{267}{268}>-\dfrac{1347}{1343}\)
d: \(\dfrac{-181818}{313131}=\dfrac{-181818:10101}{313131:10101}=\dfrac{-18}{31}\)
Ta có :
\(b^2=ac\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}\)
\(c^2=bd\Leftrightarrow\dfrac{b}{c}=\dfrac{c}{d}\)
\(\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
Mà \(\dfrac{a^3}{b^3}=\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\)
\(\Leftrightarrow\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\)
Em có cách khác!
\(\frac{1}{a+b+c}+\frac{1}{b+c+d}+\frac{1}{c+d+a}+\frac{1}{d+a+b}=\frac{1}{40}\)
\(\Rightarrow\frac{a+b+c+d}{a+b+c}+\frac{a+b+c+d}{b+c+d}+\frac{a+b+c+d}{c+d+a}\)
\(+\frac{a+b+c+d}{d+a+b}=50\)
\(\Rightarrow\frac{d}{a+b+c}+1+\frac{a}{b+c+d}+1+\frac{b}{c+d+a}+1\)
\(+\frac{c}{d+a+b}+1=50\)
\(\Rightarrow\frac{d}{a+b+c}+\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}=46\)
Đề: \(a+b+c+d=2000\)
\(\frac{1}{a+b+c}+\frac{1}{b+c+d}+\frac{1}{c+d+a}+\frac{1}{d+a+b}=\frac{1}{40}\)
Tính:
\(S=\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}\)
Giải:
Có: \(\frac{1}{a+b+c}+\frac{1}{b+c+d}+\frac{1}{c+d+a}+\frac{1}{d+a+b}=\frac{1}{40}\)
=> \(\frac{1}{2000-d}+\frac{1}{2000-a}+\frac{1}{2000-b}+\frac{1}{2000-c}=\frac{1}{40}\)
<=> \(\frac{2000}{2000-d}+\frac{2000}{2000-a}+\frac{2000}{2000-b}+\frac{2000}{2000-c}=\frac{2000}{40}\)
<=> \(1+\frac{d}{2000-d}+1+\frac{a}{2000-a}+1+\frac{b}{2000-b}+1+\frac{c}{2000-c}=50\)
<=> \(\frac{d}{a+b+c}+\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}=46\)
=> \(S=46\)
Ta có S = \(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}\)
=> S + 4 = \(\left(\frac{a}{b+c+d}+1\right)+\left(\frac{b}{c+d+a}+1\right)+\left(\frac{c}{d+a+b}+1\right)+\left(\frac{d}{a+b+c}+1\right)\)
= \(\frac{a+b+c+d}{b+c+d}+\frac{a+b+c+d}{c+d+a}+\frac{a+b+c+d}{d+a+b}+\frac{a+b+c+d}{a+b+c}\)
\(=\left(a+b+c+d\right)\left(\frac{1}{b+c+d}+\frac{1}{c+d+a}+\frac{1}{d+a+b}+\frac{1}{a+b+c}\right)\)
\(=4000.\frac{1}{40}=100\)
=> S = 100 - 4 = 96
\(S=\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{a+b}\)
\(3+S=1+\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}\)
\(3+S=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)
\(3+S=\left(a+b+c\right).\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
\(3+S=\frac{2001.1}{10}=\frac{2001}{10}\Rightarrow S=\frac{2001}{10}-3\)