Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=t\Rightarrow\hept{\begin{cases}x=at\\y=bt\\z=ct\end{cases}}\).
\(4=\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=4+2\left(ab+bc+ca\right)\)
\(\Rightarrow ab+bc+ca=0\)
\(P=xy+yz+zx=abt^2+bct^2+cat^2=t^2\left(ab+bc+ca\right)=0\)
ta có: \(x+y+z=a\Rightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=a^2\)
\(\Rightarrow b+2\left(xy+yz+xz\right)=a^2\Rightarrow xy+yz+xz=\frac{a^2-b}{2}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{c}\Rightarrow\frac{xy+yz+xz}{xyz}=\frac{1}{c}\Rightarrow c\left(xy+yz+xz\right)=xyz\)
Ta có:\(x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)+3xyz\)
\(=a\left(b-\frac{a^2-b}{2}\right)+\frac{3c\left(a^2-b\right)}{2}\)
Ta có : \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}==\frac{x+y+z}{a+b+c}=\frac{x+y+z}{1}\)
\(\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2+y^2+z^2}{1}\)
\(\left(x+y+z\right)^2=x^2+y^2+z^2\)
\(\Rightarrow2\left(xy+yz+zx\right)=0\)
\(\Rightarrow xy+yz+zx=0\)
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\) thì \(x=ak;\) \(y=bk;\) \(z=ck\)
Khi đó, \(xy+yz+xz=abk^2+ack^2+bck^2=k^2\left(ab+bc+ac\right)\) \(\left(1\right)\)
Vì \(a+b+c=1\) nên suy ra \(\left(a+b+c\right)^2=1\)
Hay \(a^2+b^2+c^2+2\left(ab+bc+ac\right)=1\) \(\left(2\right)\)
Do \(a^2+b^2+c^2=1\) (theo giả thiết) nên \(\left(2\right)\) \(\Rightarrow\) \(ab+bc+ac=0\)
Thay vào \(\left(1\right)\), ta được \(xy+yz+xz=0\)