Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{ab}{b}=\frac{bc}{c}=\frac{ca}{a}=\frac{ab+bc+ca}{b+c+a}=\frac{\left(10a+b\right)+\left(10b+c\right)+\left(10c+a\right)}{a+b+c}=\frac{11.\left(a+b+c\right)}{a+b+c}=11\)
\(\Rightarrow\begin{cases}ab=11b\\bc=11c\\ca=11a\end{cases}\)\(\Rightarrow\begin{cases}10a+b=11b\\10b+c=11c\\10c+a=11a\end{cases}\)\(\Rightarrow\begin{cases}10a=10b\\10b=10c\\10c=10a\end{cases}\)\(\Rightarrow10a=10b=10c\)
=> a = b = c (đpcm)
soyeon_Tiểubàng giải bạn giúp bn ấy ik trong đó có câu 2 mk cần ó
Đặt \(\frac{a}{b}\)=\(\frac{c}{d}\)= k ( k \(\in\)Z , k khác 0 )
=> a = bk ; c = dk
Ta có:
\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\) (1)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\) (2)
Từ (1) và (2) suy ra: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)
Vậy nếu \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
\(\Leftrightarrow\left(a^2+b^2\right).cd=ab.\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2cd+b^2cd=abc^2+abd^2\)
\(\Leftrightarrow a^2cd-abd^2=abc^2-b^2cd\)
\(\Leftrightarrow ad\left(ac-bd\right)=bc\left(ac-bd\right)\)
\(\Leftrightarrow ad=bc\)
\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Ta có:
\(\frac{\overline{ab}}{\overline{bc}}=\frac{b}{c}\)
<=> \(\frac{a.10+b}{b.10+c}=\frac{b}{c}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{a.10+b}{b.10+c}=\frac{b}{c}=\frac{10a+b-b}{10b+c-c}=\frac{10a}{10b}=\frac{a}{b}\)
=> \(\frac{b}{c}=\frac{a}{b}\Rightarrow b^2=ac\)
khi đó: \(\frac{a^2+b^2}{b^2+c^2}=\frac{a^2+ac}{ac+c^2}=\frac{a\left(a+c\right)}{c\left(a+c\right)}=\frac{a}{c}\)
Vậy:...
thay \(ab=c^2\) vào\(\frac{a^2+c^2}{b^2+c^2}\)
\(\Rightarrow\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\left(đpcm\right)\)
Từ\(ab=c^2\Rightarrow ab=cc\Rightarrow\frac{a}{c}=\frac{c}{b}\)
Đặt \(\frac{a}{c}=\frac{c}{b}=k\Rightarrow\hept{\begin{cases}a=ck\\c=bk\end{cases}}\)
Khi đó : \(\frac{a}{b}=\frac{ck}{b}=\frac{b.k^2}{b}=k^2\)(1) ;
\(\frac{a^2+c^2}{b^2+c^2}=\frac{c^2.k^2+c^2}{b^2.k^2+b^2}=\frac{c^2\left(k^2+1\right)}{b^2\left(k^2+1\right)}=\frac{c^2}{b^2}=\frac{b^2.k^2}{b^2}=k^2\)(2)
Từ (1) và (2) => đpcm
Ta có:
\(ab=c^2\)
=>\(\frac{a^2+c^2}{b^2+c^2}=\frac{a^2+ab}{b^2+ab}=\frac{a.a+a.b}{b.b+a.b}=\frac{a.\left(a+b\right)}{b.\left(a+b\right)}=\frac{a}{b}\)
Ta có:
\(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
Ta có:
\(\frac{a^2-b^2}{c^2-d^2}=\frac{b^2.k^2-b^2}{d^2.k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\left(1\right)\)
\(\frac{ab}{dc}=\frac{bk.b}{dk.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1)(2) => \(\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}.\)
\(\Rightarrow\left(a^2+b^2\right).cd=ab.\left(c^2+d^2\right)\)
\(\Rightarrow a^2cd+b^2cd=abc^2+abd^2\)
\(\Rightarrow a^2cd+b^2cd-abc^2-abd^2=0\)
\(\Rightarrow\left(a^2cd-abc^2\right)+\left(b^2cd-abd^2\right)=0\)
\(\Rightarrow ac.\left(ad-bc\right)+bd.\left(bc-ad\right)=0\)
\(\Rightarrow ac.\left(ad-bc\right)-bd.\left(ad-bc\right)=0\)
\(\Rightarrow\left(ad-bc\right).\left(ac-bd\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}ad-bc=0\\ac-bd=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}ad=bc\\ac=bd\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\frac{a}{b}=\frac{c}{d}\left(đpcm\right).\\\frac{a}{b}=\frac{d}{c}\end{matrix}\right.\)
Vậy \(\frac{a}{b}=\frac{c}{d}.\)
Chúc bạn học tốt!
ab=cc => a/c=c/b
a/c=c/b => (a^2)/(c^2)=(c^2)/(b^2)=(a^2+c^2)/(b^2+c^2) =K (1) ta thay ab=cc vào (1) ta có:
K=(a^2+ab)/(b^2+ab)=a*(a+b)/b*(a+b)=a/b => ĐPCM
voi \(\frac{a}{c}=\frac{c}{b}\Rightarrow a.b=c.c\Rightarrow c^2=a.b\) thay\(c^2=a.bvao\frac{a^2+c^2}{b^2+c^2}\) ta duoc: \(\frac{a^2+c^2}{b^2+c^2}=\frac{a^2+a.b}{a.b+b^2}=\frac{a.a+a.b}{a.b+b.b}=\frac{a.\left(a+b\right)}{b.\left(a+b\right)}\frac{a}{b}\) vay \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\) dpcm