Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{a+b}\)
\(3+S=1+\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}\)
\(3+S=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)
\(3+S=\left(a+b+c\right).\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
\(3+S=\frac{2001.1}{10}=\frac{2001}{10}\Rightarrow S=\frac{2001}{10}-3\)
Lời giải:
$(a+b+c)(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a})=2007.90$
$\Rightarrow \frac{a}{a+b}+\frac{a}{b+c}+\frac{a}{c+a}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{c}{b+c}+\frac{c}{c+a}=180630$
$\Rightarrow \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}=180630$
$\Rightarrow M+1+1+1=180630$
$\Rightarrow M =180627$
Ta có :\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)
\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
Nếu a + b + c = 0
=> a + b = - c ;
a + c = - b
b + c = - a
Khi đó M = \(\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}.\frac{a+c}{c}.\frac{b+c}{b}=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=\frac{-\left(abc\right)}{abc}=-1\)
Nếu a +b + c \(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)
Khi đó M = a + b/a . a + c/c . b + c/b = 2a/a . 2c/c . 2b/b = 2.2.2 = 8
Vậy M = 8 hoặc M = - 1
Ta có: \(\frac{a+b-c}{c}=\frac{a+b}{c}-\frac{c}{c}=\frac{a+b}{c}-1\)
\(\frac{b+c-a}{a}=\frac{b+c}{a}-\frac{a}{a}=\frac{b+c}{a}-1\)
\(\frac{c+a-b}{b}=\frac{c+a}{b}-\frac{b}{b}=\frac{c+a}{b}-1\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{c+a+b}\)\(=\frac{a+b+c}{a+b+c}\)
TH1) (trường hợp 1) \(a+b+c\ne0\)\(\Rightarrow\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\frac{a+b}{c}-1=\frac{a+c}{b}-1=\frac{b+c}{a}-1=1\)
\(\Rightarrow\frac{a+b}{c}=\frac{a+c}{b}=\frac{b+c}{a}=2\)
Ta có: \(M=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)\(=\left(\frac{a}{a}+\frac{b}{a}\right)\left(\frac{c}{c}+\frac{a}{c}\right)\left(\frac{b}{b}+\frac{c}{b}\right)\)
\(=\frac{a+b}{a}.\frac{a+c}{c}.\frac{b+c}{b}=\frac{\left(a+b\right)\left(a+c\right)\left(b+c\right)}{abc}\)
\(=\frac{a+b}{c}.\frac{a+c}{b}.\frac{b+c}{a}=2.2.2=8\)
TH2) (trường hợp 2) \(a+b+c=0\)
\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
\(\Rightarrow M=\frac{a+b}{-c}.\frac{a+c}{-b}.\frac{b+c}{-a}=\left(-1\right)\left(-1\right)\left(-1\right)=-1\)
Vậy, M= 8 hoặc M=-1
HOK TỐT
Ta có :
M = ( a + b + c - d ) + ( a + b - c + d ) + ( a - b + c + d ) + ( -a + b + c + d )
= a + b + c - d + a + b - c + d + a - b + c + d - a + b + c + d
= ( a + a + a - a ) + ( b + b - b + b ) + ( c - c + c + c ) + ( - d + d + d + d )
= 2a + 2b + 2c + 2d
= 2 . ( a + b + c + d )
Thay a = 1 , b = 10 , c = 100 và d = 1000 vào biểu thức M có :
M = 2 .( 1 + 10 + 100 + 1000 )
M = 2 . 1111
M = 2222
Vậy M = 2222 khi a = 1 , b = 10 , c = 100 và d = 1000 .
Học tốt
\(M=\left(a+b+c-d\right)+\left(a+b-c+d\right)+\left(a-b+c+d\right)+\left(-a+b+c+d\right)\)
\(=a+b+c-d+a+b-c+d+a-b+c+d-a+b+c+d\)
\(=\left(a+b+c+d\right).3-\left(a+b+c+d\right)=2\left(a+b+c+d\right)\)
\(=2\left(1+10+100+1000\right)=2.1111=2222\)
Vì a, b, c là 3 số thực dương nên a + b + c khác 0
( a + b - c ) / c = ( b + c - a) / a = ( a + c - b ) / b
Cộng mỗi vế với 2 ta đc
( a + b + c ) / c = ( a + b + c ) / b = ( a + b + c ) / c
Mà a + b + c khác 0
Nên a = b = c
Khi đó M = ( 1 + a/a ).( 1 + b/b).( 1 + c/c )
= 2.2.2 = 8
Vậy M = 8