K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 9 2019

\(\frac{a^2}{b-1}+4\left(b-1\right)\ge4a\) ; \(\frac{b^2}{c-1}+4\left(c-1\right)\ge4b\); \(\frac{c^2}{a-1}+4\left(a-1\right)\ge4c\)

Cộng vế với vế, chuyển vế và rút gọn ta có đpcm

Dấu "=" xảy ra khi \(a=b=c=2\)

22 tháng 9 2019
https://i.imgur.com/Zp7w7Kf.jpg
11 tháng 2 2020

I think that we have to prove \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=-2\)

We have \(a+b+c=abc\)

\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

We have \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=0\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=0\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=0\)( Because \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\))

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=-2\)

So...

26 tháng 2 2021

Theo bđt Cauchy - Schwart ta có:

\(\text{Σ}cyc\frac{c}{a^2\left(bc+1\right)}=\text{Σ}cyc\frac{\frac{1}{a^2}}{b+\frac{1}{c}}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+a+b+c}\)\(=\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+3}\)

\(=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)+3a^2b^2c^2}\)

Đặt \(ab+bc+ca=x;abc=y\).

Ta có: \(\frac{x^2}{xy+3y^2}\ge\frac{9}{x\left(1+y\right)}\Leftrightarrow x^3+x^3y\ge9xy+27y^2\)

\(\Leftrightarrow x\left(x^2-9y\right)+y\left(x^3-27y\right)\ge0\) ( luôn đúng )

Vậy BĐT đc CM. Dấu '=' xảy ra <=> a=b=c=1

26 tháng 2 2021

sai rồi nhé bạn 

20 tháng 7 2019

Em chỉ giải ra được 1 TH dấu bằng thôi: a = b = c (còn trường hợp a = b; c=0 và các hoán vị thì em chịu, vì khi xét dấu = trong bđt thì em chỉ xảy ra 1 th)

Áp dụng BĐT Cauchy-Schwarz dạng Engel;

\(VT\ge\frac{16}{a^2+b^2+c^2+\left(a+b+c\right)^2}\ge\frac{16}{\frac{\left(a+b+c\right)^2}{3}+\left(a+b+c\right)^2}\)\(=\frac{12}{\left(a+b+c\right)^2}\) (đpcm)

Đẳng thức xảy ra khi a = b = c

20 tháng 7 2019

hay là có khi nào em xét dấu đẳng thức sai ko nhỉ? :))

12 tháng 5 2016

Ta có : \(\log_{\frac{a}{b}}^2\frac{c}{b}=\log_{\frac{a}{b}}^2\frac{b}{c};\log_{\frac{b}{c}}^2\frac{a}{c}=\log_{\frac{b}{c}}^2\frac{c}{a};\log_{\frac{c}{a}}^2\frac{b}{a}=\log_{\frac{c}{a}}^2\frac{a}{b}\)

\(\Rightarrow\log_{\frac{a}{b}}^2\frac{c}{b}.\log_{\frac{b}{c}}^2\frac{a}{c}.\log_{\frac{c}{a}}^2\frac{b}{c}=\log_{\frac{a}{b}}^2\frac{c}{b}.\log^2_{\frac{b}{c}}\frac{c}{a}\log_{\frac{c}{a}}^2\frac{a}{b}=\left(\log_{\frac{a}{b}}\frac{c}{b}.\log_{\frac{b}{c}}\frac{c}{a}\log_{\frac{c}{a}}\frac{a}{b}\right)^2=1^2=1\)

\(\Rightarrow\) Trong 3 số không âm \(\log_{\frac{a}{b}}^2\frac{c}{b};\log^2_{\frac{b}{c}}\frac{c}{a};\log_{\frac{c}{a}}^2\frac{a}{b}\) luôn có ít nhất 1 số lớn hơn 1

 

26 tháng 3 2016

a) \(A=\left[\left(\frac{1}{5}\right)^2\right]^{\frac{-3}{2}}-\left[2^{-3}\right]^{\frac{-2}{3}}=5^3-2^2=121\)

b) \(B=6^2+\left[\left(\frac{1}{5}\right)^{\frac{3}{4}}\right]^{-4}=6^2+5^3=161\)

c) \(C=\frac{a^{\sqrt{5}+3}.a^{\sqrt{5}\left(\sqrt{5}-1\right)}}{\left(a^{2\sqrt{2}-1}\right)^{2\sqrt{2}+1}}=\frac{a^{\sqrt{5}+3}.a^{5-\sqrt{5}}}{a^{\left(2\sqrt{2}\right)^2-1^2}}\)

                              \(=\frac{a^{\sqrt{5}+3+5-\sqrt{5}}}{a^{8-1}}=\frac{a^8}{a^7}=a\)

d) \(D=\left(a^{\frac{1}{2}}-b^{\frac{1}{2}}\right)^2:\left(b-2b\sqrt{\frac{b}{a}}+\frac{b^2}{a}\right)\)

        \(=\left(\sqrt{a}-\sqrt{b}\right)^2:b\left[1-2\sqrt{\frac{b}{a}}+\left(\sqrt{\frac{b}{a}}\right)^2\right]\)

        \(=\left(\sqrt{a}-\sqrt{b}\right)^2:b\left(1-\sqrt{b}a\right)^2\)

        

NV
25 tháng 6 2020

Phương trình dạng tham số của d: \(\left\{{}\begin{matrix}x=-1+2t\\y=1-t\\z=2t\end{matrix}\right.\)

Do \(M\in d\) nên tọa độ thỏa mãn \(\left\{{}\begin{matrix}a=-1+2t\\b=1-t\\z=2t\end{matrix}\right.\)

\(A=\left(a+1\right)^2+b^2+c^2=\left(-1+2t+1\right)^2+\left(1-t\right)^2+4t^2\)

\(=9t^2-2t+1=9\left(t-\frac{1}{9}\right)^2+\frac{8}{9}\ge\frac{1}{9}\)

Dấu "=" xảy ra khi \(t=\frac{1}{9}\Rightarrow\left\{{}\begin{matrix}a=-\frac{7}{9}\\b=\frac{8}{9}\\c=\frac{2}{9}\end{matrix}\right.\) \(\Rightarrow T=0\)