\(\ge\frac{1}{3}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2020

Đề bài phải có cả điều kiện \(a,b,c\ge0\)nữa chứ bạn

Ta có: \(a^2+b^2+c^2+\frac{1}{3}=\left(a^2+\frac{1}{9}\right)+\left(b^2+\frac{1}{9}\right)+\left(c^2+\frac{1}{9}\right)\)

Vì \(a^2\ge0\)\(\frac{1}{9}>0\)

\(\Rightarrow\)Áp dụng bđt Cô-si với 2 số không âm ta có: 

\(a^2+\frac{1}{9}\ge2\sqrt{a^2.\frac{1}{9}}=\frac{2a}{3}\)

Tương tự ta có: \(b^2+\frac{1}{9}\ge\frac{2b}{3}\)\(c^2+\frac{1}{9}\ge\frac{2c}{3}\)

mà \(a+b+c=1\)

\(\Rightarrow\left(a^2+\frac{1}{9}\right)+\left(b^2+\frac{1}{9}\right)+\left(c^2+\frac{1}{9}\right)\ge\frac{2a}{3}+\frac{2b}{3}+\frac{2c}{3}\)

\(=\frac{2a+2b+2c}{3}=\frac{2\left(a+b+c\right)}{3}=\frac{2}{3}\)

hay \(a^2+b^2+c^2+\frac{1}{3}\ge\frac{2}{3}\)\(\Rightarrow a^2+b^2+c^2\ge\frac{1}{3}\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

11 tháng 11 2020

ko cần á bạn. Vì a2,b2,c2\(\ge0\)rồi á

15 tháng 10 2016

Áp dụng bunhiacopsky ta có

(a3 + b3 + c3)(\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\))\(\ge\)(\(\frac{\sqrt{a^3}}{\sqrt{a}}+\frac{\sqrt{b^3}}{\sqrt{b}}+\frac{\sqrt{c^3}}{\sqrt{c}}\))2 = (a + b + c)2

21 tháng 6 2017

\(\frac{a^3}{b+2c}+\frac{b^3}{c+2a}+\frac{c^3}{a+2b}\)

\(=\frac{a^4}{ab+2ca}+\frac{b^4}{bc+2ab}+\frac{c^4}{ca+2bc}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{3\left(ab+bc+ca\right)}\ge\frac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)}=\frac{1}{3}\)

11 tháng 10 2020

THƯA CHỊ BÀI NÀY LÀ SAO AK, E HỌC LỚP 5 ** BIK BÀI NÀY NHÉ ~_~ !!!!!!!!!!!

11 tháng 10 2020

vậy em giải giùm chị nhé

8 tháng 10 2017

a) \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

(Luôn đúng)

Vậy ta có đpcm.

Đẳng thức khi \(a=b=c\)

b) \(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2b+1+a^2-2a+1\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-1\right)^2+\left(a-1\right)^2\ge0\)

(Luôn đúng)

Vậy ta có đpcm

Đẳng thức khi \(a=b=1\)

Các bài tiếp theo tương tự :v

g) \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)=a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\ge6\sqrt[6]{a^2.a^2b^2.b^2.b^2c^2.c^2.c^2a^2}=6abc\)

i) \(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=\dfrac{2}{\sqrt{ab}}\)

Tương tự: \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}};\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{2}{\sqrt{ca}}\)

Cộng vế theo vế rồi rút gọn cho 2, ta được đpcm

j) Tương tự bài i), áp dụng Cauchy, cộng vế theo vế rồi rút gọn được đpcm

19 tháng 10 2017

\(\frac{a^2}{a+b^2}=a-\frac{ab^2}{a+b^2}\ge a-\frac{\sqrt{ab^2}}{2}=a-\frac{\sqrt{ab.b}}{2}\ge a-\frac{ab+b}{4}\)

CMTT: \(VT\ge2.\left(a+b+c-\frac{a+b+c+ab+cb+ca}{4}\right)\)

Ta lại có \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\le\left(a+b+c\right)\sqrt{3\left(a^2+b^2+c^2\right)}=3\left(a+b+c\right)\)

=> \(ab+bc+ca\le a+b+c\)

=> \(VT\ge2\left(a+b+c-\frac{a+b+c}{2}\right)=a+b+c\left(dpcm\right)\)

Dấu bằng khi a=b=c=1

18 tháng 3 2018

Mình có một cách khác. Các bạn xem nhé!

Đặt a  = b  = c . Ta có:

\(\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}=\frac{2a^2}{a+a^2}+\frac{2a^2}{a+a^2}+\frac{2a^2}{a+a^2}=3\left(\frac{2a^2}{a^3}\right)\ge a^3\)(Do a = b = c nên ta thế a,b,c = a)

\(\Leftrightarrow\frac{2a^2}{a^3}+\frac{2b^2}{b^3}+\frac{2c^2}{c^3}=\frac{2a^2+2b^2+2c^2}{a^3+b^3+c^3}=\frac{6\left(a^2+b^2+c^2\right)}{\left(a^2.b^2.c^2\right):\left(a+b+c\right)}=\frac{6}{2}=3\)

\(\Rightarrow\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}>a+b+c^{\left(đpcm\right)}\)

Dấu = xảy ra khi a =b = c  = 1

AH
Akai Haruma
Giáo viên
25 tháng 8 2024

Đề sai. Bạn xem lại nhé.