\(\frac{\left(a+b+c\right)^2}{ab+bc+ac}+\frac{ab+bc+ac}{\left(a+b+c\r...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2019

Đặt: \(\frac{\left(a+b+c\right)^2}{ab+bc+ac}=t\)

Dễ chứng minh \(t\ge3\)

Ta viết lại biểu thức: \(\frac{\left(a+b+c\right)^2}{ab+bc+ac}+\frac{ab+bc+ac}{\left(a+b+c\right)^2}=t+\frac{1}{t}\)

\(=\frac{1}{9}t+\frac{1}{t}+\frac{8}{9}t\ge2\sqrt{\frac{1}{9}}+\frac{8}{9}t\ge\frac{2}{3}+\frac{24}{9}=\frac{10}{3}\)

\("="\Leftrightarrow t=3\Leftrightarrow a=b=c\)

20 tháng 9 2019

\(\sqrt{\frac{\left(a+bc\right)\left(b+ac\right)}{c+ab}}=\sqrt{\frac{\left(a^2+ab+ac+bc\right)\left(b^2+bc+ba+ac\right)}{c^2+ca+cb+ab}}=\sqrt{\frac{\left(a+b\right)\left(a+c\right)\left(b+a\right)\left(b+c\right)}{\left(c+a\right)\left(c+b\right)}}=a+b\left(a,b,c>0;a+b+c=1\right)\)

Bạn làm tương tự nha

\(\Rightarrow P=a+b+c+a+b+c=2\left(a+b+c\right)=2\)

31 tháng 12 2017

Áp dụng bđt cô si ta có:
\(\frac{a^2\left(b+1\right)}{a+b+ab}+\frac{a+b+ab}{b+1}\ge2a\)
\(\Leftrightarrow\frac{a^2\left(b+1\right)}{a+b+ab}\ge2a-\frac{a\left(b+1\right)+b}{b+1}=2a-a-\frac{b}{b+1}=a-\frac{b}{b+1}\)
Mặt khác:
\(\frac{b}{b+1}\le\frac{b+1}{4}\)
\(\Rightarrow\frac{a^2\left(b+1\right)}{a+b+ab}\ge a-\left(\frac{b+1}{4}\right)\)
Tương tự:
\(\frac{b^2\left(c+1\right)}{b+c+bc}\ge b-\left(\frac{c+1}{4}\right)\)
\(\frac{c^2\left(a+1\right)}{c+a+ca}\ge c-\left(\frac{a+1}{4}\right)\)
\(\Rightarrow P\ge\left(a+b+c\right)-\left(\frac{a+1}{4}+\frac{b+1}{4}+\frac{c+1}{4}\right)=\left(a+b+c\right)-\left(\frac{\left(a+b+c\right)+3}{4}\right)=3-\left(\frac{3+3}{4}\right)=\frac{3}{2}\)Vậy GTNN của P=3/2 
(Thấy sai sai chỗ nào đó mà ko biết chỗ nào, ae thấy thì chỉ nhá )

31 tháng 12 2017

đoạn bạn dùng cô si ấy hình như bị sai do nếu a=b=c=1 thì sao lại a^2(b+1)/(a+b+ab)=(a+b+ab)/(b+1)
 

27 tháng 5 2018

a+b+c=abc à

28 tháng 5 2018

uk bạn ơi

25 tháng 9 2019

Ta có: \(P=\Sigma\frac{\left(\frac{1}{c^2}\right)}{\left(\frac{1}{a}+\frac{1}{b}\right)}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}=\frac{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}{2}\ge\frac{\left(\frac{9}{a+b+c}\right)}{2}=\frac{3}{2}\)

Đẳng thức xảy ra khi a =b =c = 1.

True?

18 tháng 4 2020

Ta có : 

\(P=\frac{ab}{c^2\left(a+b\right)}+\frac{ac}{b^2\left(a+c\right)}+\frac{bc}{a^2\left(b+c\right)}\)

\(\Rightarrow P=\frac{\left(\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}}+\frac{\left(\frac{1}{b}\right)^2}{\frac{1}{c}+\frac{1}{a}}+\frac{\left(\frac{1}{a}\right)^2}{\frac{1}{c}+\frac{1}{b}}\)

\(\Rightarrow P\ge\frac{\left(\frac{1}{c}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{c}+\frac{1}{b}}\)

\(\Rightarrow P\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}\)

\(\Rightarrow P\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow P\ge\frac{1}{2}.\frac{9}{a+b+c}\)

\(\Rightarrow P\ge\frac{3}{2}\)

Dấu = xảy ra khi  a=b=c=1 

21 tháng 4 2017

(Lời giải của thằng bạn)

\(\frac{bc}{a^2\left(b+c\right)}=\frac{\left(\frac{1}{a}\right)^2}{\frac{1}{b}+\frac{1}{c}}\). Tương tự ta có \(P=\frac{\left(\frac{1}{a}\right)^2}{\frac{1}{b}+\frac{1}{c}}+\frac{\left(\frac{1}{b}\right)^2}{\frac{1}{c}+\frac{1}{a}}+\frac{\left(\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}\)

Mà \(\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{1}{2}.\frac{9}{a+b+c}=\frac{3}{2}\)

Nên \(minP=\frac{3}{2}\) và đẳng thức xảy ra tại \(a=b=c=1\)

10 tháng 5 2020

Sửa đề số hạng cuối \(\frac{bc}{b^2\left(a+c\right)}\)

Đặt \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\)thì x,y,z>0 và xyz=1. Khi đó:

\(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)

(BĐT Cauchy cho 3 số dương, kết hợp với giả thết xyz=1)

Dấu "=" xảy ra <=> x=y=z=1 tức là a=b=c=1

30 tháng 12 2017

Ta có: \(P=\Sigma\dfrac{a^2\left(b+1\right)}{a\left(b+1\right)+b}=\Sigma\dfrac{a^2\left(b+1\right)+ab-ab}{a\left(b+1\right)+b}=\Sigma\left(a-\dfrac{ab}{a\left(b+1\right)+b}\right)\)

\(\Rightarrow P=\left(a+b+c\right)-\Sigma\dfrac{ab}{a\left(b+1\right)+b}=3-\Sigma\dfrac{ab}{a\left(b+1\right)+b}\)

Áp dụng BĐT Cauchy \(\Rightarrow a\left(b+1\right)+b=ab+b+a\ge3\sqrt[3]{a^2b^2}\)

\(\Rightarrow P\ge3-\Sigma\dfrac{ab}{\sqrt[3]{a^2b^2}}=3-\Sigma\dfrac{\sqrt[3]{ab}}{3}\)

\(\sqrt[3]{ab}=\sqrt[3]{a.b.1}\le\dfrac{a+b+1}{3}\)

\(3-\Sigma\dfrac{\sqrt[3]{ab}}{3}=3-\dfrac{\sqrt[3]{ab}+\sqrt[3]{bc}+\sqrt[3]{ac}}{3}\ge3-\dfrac{\dfrac{2\left(a+b+c\right)+3}{3}}{3}=3-1=2\)

\(\Rightarrow P\ge2\) \(\Rightarrow MinP=2\) khi a = b = c =1

AH
Akai Haruma
Giáo viên
30 tháng 12 2017

Lời giải khác:

Áp dụng BĐT Cauchy-Schwarz:

\(P=\frac{a^2(b+1)}{a+b+ab}+\frac{b^2(c+1)}{b+c+bc}+\frac{c^2(a+1)}{c+a+ac}\)\(=\frac{a^2}{\frac{a+b+ab}{b+1}}+\frac{b^2}{\frac{b+c+bc}{c+1}}+\frac{c^2}{\frac{c+a+ca}{a+1}}\)

\(\geq \frac{(a+b+c)^2}{\frac{(a+1)(b+1)-1}{b+1}+\frac{(b+1)(c+1)-1}{c+1}+\frac{(c+1)(a+1)-1}{a+1}}\)

\(\Leftrightarrow P\geq \frac{9}{a+b+c+3-\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)}=\frac{9}{6-\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)}\)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq \frac{9}{a+1+b+1+c+1}=\frac{9}{a+b+c+3}=\frac{9}{6}=\frac{3}{2}\)

Do đó: \(6-\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\leq 6-\frac{3}{2}=\frac{9}{2}\)

\(\Rightarrow P\geq \frac{9}{\frac{9}{2}}=2\)

Vậy P min là 2

Dấu bằng xảy ra khi \(a=b=c=1\)