Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
Ta có \(\sqrt{bc\left(1+a^2\right)}=\sqrt{bc+a^2bc}=\sqrt{bc+a\left(a+b+c\right)}\)
\(=\sqrt{\left(a+b\right)\left(a+c\right)}\)
Đặt BT đề cho là P
\(\Leftrightarrow P=\sum\dfrac{a}{\sqrt{bc\left(1+a^2\right)}}=\sum\sqrt{\dfrac{a}{a+b}\cdot\dfrac{a}{a+c}}\\ \Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{b+c}+\dfrac{b}{b+a}+\dfrac{c}{c+a}+\dfrac{c}{c+b}\right)\\ \Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{1}{2}\cdot3=\dfrac{3}{2}\)
Dấu \("="\Leftrightarrow a=b=c=\sqrt{3}\)
Ta có:
Theo bất đẳng thức Cô - si, ta có: \(\sqrt{\left(a+b\right)\left(a+c\right)}+\sqrt{bc}\le\frac{a+b+a+c}{2}+\frac{b+c}{2}=1\)
\(\Rightarrow\sqrt{a}\left(\sqrt{\left(a+b\right)\left(a+c\right)}+\sqrt{bc}\right)\le\sqrt{a}\)hay \(\sqrt{a^2+abc}+\sqrt{abc}\le\sqrt{a}\)
Tương tự ta có: \(\sqrt{b^2+abc}+\sqrt{abc}\le\sqrt{b}\);\(\sqrt{c^2+abc}+\sqrt{abc}\le\sqrt{c}\)
Mà \(abc\le\left(\frac{a+b+c}{3}\right)^3=\frac{1}{27}\Rightarrow\sqrt{abc}\le\frac{1}{3\sqrt{3}}\)
\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\le3\left(a+b+c\right)=3\)\(\Leftrightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\le\sqrt{3}\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)
Đơn giản là Cauchy-Schwarz
\(S^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)
\(\le\left(\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right)\left(1+1+1\right)\)
\(=3\cdot\left(2a+2b+2c\right)=6\left(a+b+c\right)=1\)
\(\Rightarrow S^2\le6\Rightarrow S\le\sqrt{6}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)
ta dự đoán điểm khi : \(a=b=c=\frac{1}{3}\)
\(\Rightarrow\sqrt{a+b}=\sqrt{b+c}=\sqrt{a+c}=\sqrt{\frac{2}{3}}\)
Khi đó ta có :
\(\sqrt{\frac{2}{3}}.\sqrt{a+b}\le\frac{\frac{2}{3}+a+b}{2}\)
\(\sqrt{\frac{2}{3}}.\sqrt{b+c}\le\frac{\frac{2}{3}+b+c}{2}\)
\(\sqrt{\frac{2}{3}}.\sqrt{c+a}\le\frac{\frac{2}{3}+a+c}{2}\)
cộng từng vế 3 bất phương trình ta có
\(\sqrt{\frac{2}{3}}.S\le\frac{1}{2}\left(\frac{2}{3}+2\left(a+b+c\right)\right)=2\) \(\Leftrightarrow S\le2.\sqrt{\frac{3}{2}}=\sqrt{6}\)
Vậy \(S_{max}=\sqrt{6}\)dấu "=" khi \(a=b=c=\frac{1}{3}\)
\(Q=\dfrac{2a}{\sqrt{a^2+ab+bc+ca}}+\dfrac{b}{\sqrt{b^2+ab+bc+ca}}+\dfrac{c}{\sqrt{c^2+ab+bc+ca}}\)
\(=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
\(=\sqrt{\dfrac{2a}{a+b}.\dfrac{2a}{a+c}}+\sqrt{\dfrac{2b}{a+b}.\dfrac{b}{2\left(b+c\right)}}+\sqrt{\dfrac{2c}{a+c}.\dfrac{c}{2\left(b+c\right)}}\)
\(\le\dfrac{1}{2}\left(\dfrac{2a}{a+b}+\dfrac{2a}{a+c}+\dfrac{2b}{a+b}+\dfrac{b}{2\left(b+c\right)}+\dfrac{2c}{a+c}+\dfrac{c}{2\left(b+c\right)}\right)\)
\(=\dfrac{9}{4}\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{7}{\sqrt{15}};\dfrac{1}{\sqrt{15}};\dfrac{1}{\sqrt{15}}\right)\)
\(P=\frac{\sqrt{a-1}}{a}+\frac{\sqrt{b-4}}{b}+\frac{\sqrt{c-9}}{c}\)
Vì \(a=\left(a-1\right)+1\ge2\sqrt{\left(a-1\right).1}=2\sqrt{a-1}\)
\(b=\left(b-4\right)+4\ge2\sqrt{\left(b-4\right).4}=4\sqrt{b-4}\)
\(c=\left(c-9\right)+9\ge2\sqrt{\left(c-9\right).9}=6\sqrt{c-9}\)
=>\(P\le\frac{1}{2}+\frac{1}{4}+\frac{1}{6}=\frac{11}{12}\)
P max = 11/12 khi a=2; b=8; c =18
Tham khảo: [TOPIC] ÔN THI BẤT ĐẲNG THỨC $\boxed{\text{THPT CHUYÊN VÀ HSG TỈNH}}$ NĂM HỌC 2019-2020 - Bất đẳng thức và cực trị - Diễn đàn Toán học.
Thay a + b + c = 1 vào là ổn! (Bài 10)