K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
QH
2
25 tháng 12 2016
quy đồng lên ta có bc/abc+ac/abc+ab/abc=0
bc+ac+ab/abc=0
suy ra bc+ac+ab=0
quy đồng M ta có (b+c)bc/abc+(c+a)ac/abc+(a+b)ab/abc
=(b^2c+bc^2+ac^2+a^2c+a^2b+ab^2)/abc
=(b^2c+ab^2+abc+bc^2+ac^2+abc+a^2c+a^2b+abc-3abc)/abc
=(b(bc+ab+ac)+c(bc+ac+ab)+a(ac+ab+bc)-3abc)/abc
=-3abc/abc=-3
T
31 tháng 3 2019
1) Theo bđt AM-GM,ta có: \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)
Suy ra \(\frac{a^2}{b+c}\ge a-\frac{b+c}{4}\)
Thiết lập hai BĐT còn lại tương tự và cộng theo vế ta có đpcm
Ta có: a + b + c = 0 => a + b = -c; b + c = -a; a + c = -b
a + b + c = 0 <=> a + b = -c
<=> (a + b)3 = (-c)3
<=> a3 + 3a2b + 3ab2 + b3 = -c3
<=> a3 + b3 + c3 = -3ab(a + b)
<=> a3 + b3 + c3 = 3abc (vì a + b = -c)
Khi đó: Q = \(\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)\)
Q = \(1+\frac{a\left(a-b\right)}{c\left(b-c\right)}+\frac{b\left(a-b\right)}{c\left(c-a\right)}+\frac{c\left(b-c\right)}{a\left(a-b\right)}+1+\frac{b\left(b-c\right)}{a\left(c-a\right)}+\frac{c\left(c-a\right)}{b\left(a-b\right)}+\frac{a\left(c-a\right)}{b\left(b-c\right)}+1\)
Q = \(3+\left(\frac{a\left(a-b\right)}{c\left(b-c\right)}+\frac{a\left(c-a\right)}{b\left(b-c\right)}\right)+\left(\frac{b\left(a-b\right)}{c\left(c-a\right)}+\frac{b\left(b-c\right)}{a\left(c-a\right)}\right)+\left(\frac{c\left(b-c\right)}{a\left(a-b\right)}+\frac{c\left(c-a\right)}{b\left(a-b\right)}\right)\)
Q = \(3+\frac{ab\left(a-b\right)+ac\left(c-a\right)}{bc\left(b-c\right)}+\frac{ab\left(a-b\right)+bc\left(b-c\right)}{ac\left(c-a\right)}+\frac{bc\left(b-c\right)+ca\left(c-a\right)}{ab\left(a-b\right)}\)
Q = \(3+\frac{a\left(ab-b^2+c^2-ac\right)}{bc\left(b-c\right)}+\frac{b\left(a^2-ab+bc-c^2\right)}{ac\left(c-a\right)}+\frac{c\left(b^2-bc+ac-a^2\right)}{ab\left(a-b\right)}\)
Q = \(3+\frac{a\left[a\left(b-c\right)-\left(b-c\right)\left(b+c\right)\right]}{bc\left(b-c\right)}+\frac{b\left[b\left(c-a\right)-\left(c-a\right)\left(c+a\right)\right]}{ac\left(c-a\right)}+\frac{c\left[c\left(a-b\right)-\left(a-b\right)\left(a+b\right)\right]}{ab\left(a-b\right)}\)
Q = \(3+\frac{a\left[a-\left(b+c\right)\right]}{bc}+\frac{b\left(b-\left(c+a\right)\right)}{ac}+\frac{c\left[c-\left(a+b\right)\right]}{ab}\)
Q = \(3+\frac{a\left(a+a\right)}{bc}+\frac{b\left(b+b\right)}{ac}+\frac{c\left(c+c\right)}{ab}\)
Q = \(3+\frac{2a^2}{bc}+\frac{2b^2}{ac}+\frac{2c^2}{ab}\)
Q = \(3+\frac{2a^3+2b^3+2c^3}{abc}\)
Q = \(3+\frac{2\left(a^3+b^3+c^3\right)}{abc}\)
Q = \(3+\frac{2.3abc}{abc}=3+6=9\)
Bài làm:
Đặt \(M=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\)
\(\Leftrightarrow abc.M=ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)
\(\Leftrightarrow abc.M=ab\left(a-b\right)+b^2c-bc^2+c^2a-ca^2\)
\(\Leftrightarrow abc.M=ab\left(a-b\right)+c^2\left(a-b\right)-c\left(a-b\right)\left(a+b\right)\)
\(\Leftrightarrow abc.M=\left(a-b\right)\left(ab+c^2-ac-bc\right)\)
\(\Leftrightarrow abc.M=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)
\(\Rightarrow M=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{abc}\)
Đặt \(N=\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\)
\(\Rightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right).N=c\left(b-c\right)\left(c-a\right)+a\left(a-b\right)\left(c-a\right)+b\left(a-b\right)\left(b-c\right)\)
Mà \(a+b+c=0\Rightarrow\hept{\begin{cases}a=-b-c\\b=-c-a\\c=-a-b\end{cases}}\)
Thay vào ta được:
\(N=\frac{c\left(b-c\right)\left(c-a\right)-\left(b+c\right)\left(a-b\right)\left(c-a\right)+b\left(a-b\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(N=\frac{c\left(c-a\right)\left(b-c-a+b\right)+b\left(a-b\right)\left(b-c-c+a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(N=\frac{c\left(c-a\right)\left(2b-c-a\right)+b\left(a-b\right)\left(a+b-2c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(N=\frac{c\left(c-a\right)\left(2b+b\right)+b\left(a-b\right)\left(-c-2c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(N=\frac{3bc\left(c-a\right)-3bc\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(N=\frac{3bc\left(b+c-2a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(N=\frac{-9abc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{9abc}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
Mà \(Q=M.N=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{abc}.\frac{9abc}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=9\)
Vậy Q = 9