\((\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b})(\frac{c}{a-b}+\frac{a}{b-c}+\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2020

Ta có: a + b +  c = 0 => a + b = -c; b + c = -a; a + c = -b

a + b + c = 0 <=> a + b = -c

<=> (a + b)3 = (-c)3 

<=> a3 + 3a2b + 3ab2 + b3 = -c3

<=> a3 + b3 + c3 = -3ab(a + b)

<=> a3 + b3 + c3 = 3abc (vì a + b = -c)

Khi đó: Q = \(\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)\)

Q = \(1+\frac{a\left(a-b\right)}{c\left(b-c\right)}+\frac{b\left(a-b\right)}{c\left(c-a\right)}+\frac{c\left(b-c\right)}{a\left(a-b\right)}+1+\frac{b\left(b-c\right)}{a\left(c-a\right)}+\frac{c\left(c-a\right)}{b\left(a-b\right)}+\frac{a\left(c-a\right)}{b\left(b-c\right)}+1\)

Q = \(3+\left(\frac{a\left(a-b\right)}{c\left(b-c\right)}+\frac{a\left(c-a\right)}{b\left(b-c\right)}\right)+\left(\frac{b\left(a-b\right)}{c\left(c-a\right)}+\frac{b\left(b-c\right)}{a\left(c-a\right)}\right)+\left(\frac{c\left(b-c\right)}{a\left(a-b\right)}+\frac{c\left(c-a\right)}{b\left(a-b\right)}\right)\)

Q = \(3+\frac{ab\left(a-b\right)+ac\left(c-a\right)}{bc\left(b-c\right)}+\frac{ab\left(a-b\right)+bc\left(b-c\right)}{ac\left(c-a\right)}+\frac{bc\left(b-c\right)+ca\left(c-a\right)}{ab\left(a-b\right)}\)

Q = \(3+\frac{a\left(ab-b^2+c^2-ac\right)}{bc\left(b-c\right)}+\frac{b\left(a^2-ab+bc-c^2\right)}{ac\left(c-a\right)}+\frac{c\left(b^2-bc+ac-a^2\right)}{ab\left(a-b\right)}\)

Q = \(3+\frac{a\left[a\left(b-c\right)-\left(b-c\right)\left(b+c\right)\right]}{bc\left(b-c\right)}+\frac{b\left[b\left(c-a\right)-\left(c-a\right)\left(c+a\right)\right]}{ac\left(c-a\right)}+\frac{c\left[c\left(a-b\right)-\left(a-b\right)\left(a+b\right)\right]}{ab\left(a-b\right)}\)

Q = \(3+\frac{a\left[a-\left(b+c\right)\right]}{bc}+\frac{b\left(b-\left(c+a\right)\right)}{ac}+\frac{c\left[c-\left(a+b\right)\right]}{ab}\)

Q = \(3+\frac{a\left(a+a\right)}{bc}+\frac{b\left(b+b\right)}{ac}+\frac{c\left(c+c\right)}{ab}\)

Q = \(3+\frac{2a^2}{bc}+\frac{2b^2}{ac}+\frac{2c^2}{ab}\)

Q = \(3+\frac{2a^3+2b^3+2c^3}{abc}\)

Q = \(3+\frac{2\left(a^3+b^3+c^3\right)}{abc}\)

Q = \(3+\frac{2.3abc}{abc}=3+6=9\)

29 tháng 7 2020

Bài làm:

Đặt \(M=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\)

\(\Leftrightarrow abc.M=ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)

\(\Leftrightarrow abc.M=ab\left(a-b\right)+b^2c-bc^2+c^2a-ca^2\)

\(\Leftrightarrow abc.M=ab\left(a-b\right)+c^2\left(a-b\right)-c\left(a-b\right)\left(a+b\right)\)

\(\Leftrightarrow abc.M=\left(a-b\right)\left(ab+c^2-ac-bc\right)\)

\(\Leftrightarrow abc.M=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)

\(\Rightarrow M=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{abc}\)

Đặt \(N=\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\)

\(\Rightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right).N=c\left(b-c\right)\left(c-a\right)+a\left(a-b\right)\left(c-a\right)+b\left(a-b\right)\left(b-c\right)\)

Mà \(a+b+c=0\Rightarrow\hept{\begin{cases}a=-b-c\\b=-c-a\\c=-a-b\end{cases}}\)

Thay vào ta được:

\(N=\frac{c\left(b-c\right)\left(c-a\right)-\left(b+c\right)\left(a-b\right)\left(c-a\right)+b\left(a-b\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(N=\frac{c\left(c-a\right)\left(b-c-a+b\right)+b\left(a-b\right)\left(b-c-c+a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(N=\frac{c\left(c-a\right)\left(2b-c-a\right)+b\left(a-b\right)\left(a+b-2c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(N=\frac{c\left(c-a\right)\left(2b+b\right)+b\left(a-b\right)\left(-c-2c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(N=\frac{3bc\left(c-a\right)-3bc\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(N=\frac{3bc\left(b+c-2a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(N=\frac{-9abc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{9abc}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

Mà \(Q=M.N=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{abc}.\frac{9abc}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=9\)

Vậy Q = 9 

25 tháng 12 2016

quy đồng lên ta có bc/abc+ac/abc+ab/abc=0

bc+ac+ab/abc=0

suy ra bc+ac+ab=0

quy đồng M ta có (b+c)bc/abc+(c+a)ac/abc+(a+b)ab/abc

=(b^2c+bc^2+ac^2+a^2c+a^2b+ab^2)/abc

=(b^2c+ab^2+abc+bc^2+ac^2+abc+a^2c+a^2b+abc-3abc)/abc

=(b(bc+ab+ac)+c(bc+ac+ab)+a(ac+ab+bc)-3abc)/abc

=-3abc/abc=-3

4 tháng 9 2017

de ma abc=3 dua ti thoi kho day

31 tháng 3 2019

1) Theo bđt AM-GM,ta có: \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)

Suy ra \(\frac{a^2}{b+c}\ge a-\frac{b+c}{4}\)

Thiết lập hai BĐT còn lại tương tự và cộng theo vế ta có đpcm

31 tháng 3 2019

4/\(\frac{a^2}{b}+b\ge2\sqrt{\frac{a^2}{b}.b}=2a\Rightarrow\frac{a^2}{b}\ge2a-b\)

Thiết lập 2 BĐT còn lai5n tương tự,cộng theo vế ta có đpcm.

28 tháng 9 2017

ta có \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}+a+b+c=a+b+c\)

\(\Leftrightarrow\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\left(a+b+c\right)=a+b+c\)

\(\Leftrightarrow\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)=\frac{\left(a+b+c\right)}{a+b+c}\)

\(\Leftrightarrow\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)=1\)

21 tháng 12 2016

gt : a / (b+c) + b/(a+c) + c/(a+b) =1

A = a2/(b+c) + b2/(a+c) + c2/(a+b)

= a[a/(b+c)] + b[b/(c+a)] + c[c/(a+b)]

=a(b+c+a)/(b+c) - a + b(a+b+c)/(c+a) - b + c(a+b+c)/(a+b) - c

=(a+b+c)[a/ (b+c)+b/(c+a)+c/(a+b)] - (a+b+c)

=(a+b+c)-(a+b+c)=0

24 tháng 1 2019

Đặt \(\frac{a-b}{c}=x;\frac{b-c}{a}=y;\frac{c-a}{b}=z\)\(\Rightarrow\frac{c}{a-b}=\frac{1}{x};\frac{a}{b-c}=\frac{1}{y};\frac{b}{c-a}=\frac{1}{z}\)

\(\Rightarrow P.Q=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3+\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}\)

\(=3+\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}\)

Ta có : \(\frac{y+z}{x}=\left(y+z\right)\frac{1}{x}=\left(\frac{b-c}{a}+\frac{c-a}{b}\right)\frac{c}{a-b}=\left(\frac{b^2-bc+ac-a^2}{ab}\right)\frac{c}{a-b}\)

\(=\frac{\left(b-a\right)\left(a+b-c\right)}{ab}\frac{c}{a-b}=\frac{\left(c-a-b\right)c}{ab}=\frac{2c^2}{ab}\)( a + b + c = 0 suy ra c = -a-b )

Tương tự : \(\frac{x+z}{y}=\frac{2a^2}{bc};\frac{x+y}{z}=\frac{2b^2}{ac}\)

\(\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}=\frac{2c^2}{ab}+\frac{2a^2}{bc}+\frac{2b^2}{ac}=\frac{2\left(a^3+b^3+c^3\right)}{abc}=\frac{2.3abc}{abc}=6\)

( vì a + b + c = 0 . CM được a3 + b3 + c3 = 3abc )

\(\Rightarrow P.Q=3+6=9\)

5 tháng 7 2016

Ta có : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)     (1)

Ta có : a+b+c khác 0

do nếu a+b+c=0=>\(\frac{a}{-a}+\frac{b}{-b}+\frac{c}{-c}=1\)=>-3=1(Vô lí)

do a+b+c khác 0 nên ta nhân (a+b+c) vào (1)

=>\(\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\left(a+b+c\right)=a+b+c\)

=>\(\frac{a^2+a\left(b+c\right)}{b+c}+\frac{b^2+b\left(c+a\right)}{c+a}+\frac{c\left(a+b\right)+c^2}{a+b}=a+b+c\)

=>\(\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c=a+b+c\)

=>\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)(ĐPCM)