Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo giả thiết thì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Rightarrow ab+bc+ca=abc\)
Ta cần chứng minh: \(\Sigma\sqrt{a+bc}\ge\sqrt{abc}+\Sigma\sqrt{a}\)(*)
Thật vậy: (*) \(\Leftrightarrow\Sigma\sqrt{\frac{a^2+abc}{a}}\ge\sqrt{abc}+\Sigma\sqrt{a}\)
\(\Leftrightarrow\Sigma\sqrt{\frac{a^2+ab+bc+ca}{a}}\ge\sqrt{abc}+\Sigma\sqrt{a}\)\(\Leftrightarrow\Sigma\sqrt{\frac{\left(a+b\right)\left(a+c\right)}{a}}\ge\sqrt{abc}+\Sigma\sqrt{a}\)
\(\Leftrightarrow\text{}\Sigma\sqrt{bc\left(a+b\right)\left(a+c\right)}\ge abc+\sqrt{abc}\left(\Sigma\sqrt{a}\right)\)(Nhân cả hai vế của bất đẳng thức với \(\sqrt{abc}>0\))
\(\Leftrightarrow\Sigma\sqrt{\left(b^2+ab\right)\left(c^2+ac\right)}\ge abc+\Sigma a\sqrt{bc}\)
Bất đẳng thức cuối luôn đúng vì theo BĐT Cauchy-Schwarz, ta có: \(\Sigma\sqrt{\left(b^2+ab\right)\left(c^2+ac\right)}\ge\Sigma\left(bc+a\sqrt{bc}\right)=abc+\Sigma a\sqrt{bc}\text{}\)
Đẳng thức xảy ra khi a = b = c = 3
1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)
\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\) thì x, y, z > 0; x + y + z = 1. Quy về: \(\sqrt{\frac{1}{x}+\frac{1}{yz}}+\sqrt{\frac{1}{y}+\frac{1}{zx}}+\sqrt{\frac{1}{z}+\frac{1}{xy}}\ge\sqrt{\frac{1}{xyz}}+\sqrt{\frac{1}{x}}+\sqrt{\frac{1}{y}}+\sqrt{\frac{1}{z}}\)
\(\Leftrightarrow\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Leftrightarrow\frac{x}{\sqrt{x+yz}+\sqrt{yz}}+\frac{y}{\sqrt{y+zx}+\sqrt{zx}}+\frac{z}{\sqrt{z+xy}+\sqrt{xy}}\ge1\) (chuyển vế qua nhóm lại rồi liên hợp)
\(\Leftrightarrow\Sigma_{cyc}\frac{x}{\sqrt{x\left(x+y+z\right)+yz}+\sqrt{yz}}\ge1\Leftrightarrow\Sigma_{cyc}\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}+\sqrt{yz}}\ge1\)
BĐT này đúng! Thật vậy:
\(VT\ge\Sigma_{cyc}\frac{x}{\frac{\left(x+y\right)+\left(z+z\right)}{2}+\frac{\left(y+z\right)}{2}}=\Sigma_{cyc}\frac{x}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
Ta có đpcm. Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\Leftrightarrow a=b=c=3\)
Ta có : \(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}=1\Leftrightarrow\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=\sqrt{abc}\)
Do đó : \(ab+bc+ac\ge\frac{abc}{3}\)
\(\Leftrightarrow3\left(ab+bc+ac\right)\ge\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)^2\)
\(\Leftrightarrow2\left(ab+bc+ca\right)\ge2\left(\sqrt{a^2bc}+\sqrt{b^2ac}+\sqrt{c^2ab}\right)\)
\(\Leftrightarrow a\left(\sqrt{b}-\sqrt{c}\right)^2+b\left(\sqrt{c}-\sqrt{a}\right)^2+c\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (luôn đúng)
Vậy bđt ban đầu được chứng minh
Tham khảo
Câu hỏi của Châu Trần - Toán lớp 9 - Học toán với OnlineMath
Ta có:\(H=\frac{\sqrt{a}-\sqrt{b}}{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}+c}+\frac{\sqrt{b}-\sqrt{c}}{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}+a}+\frac{\sqrt{c}-\sqrt{a}}{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}+b}\)
\(=\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{c}+\sqrt{a}\right)\left(\sqrt{c}+\sqrt{b}\right)}+\frac{\sqrt{b}-\sqrt{c}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}+\frac{\sqrt{c}-\sqrt{a}}{\left(\sqrt{b}+\sqrt{a}\right)\left(\sqrt{b}+\sqrt{c}\right)}\)
\(=\frac{a-b+b-c+c-a}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)}\)\(=0\)
Vậy \(H=0\)
Đề bài nhìn không đúng lắm (thay điểm rơi vào thấy ko thỏa) có lẽ bạn ghi thiếu c cuối cùng, BĐT đúng có vẻ là:
\(\sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}\ge\sqrt{abc}+\sqrt{a}+\sqrt{b}+\sqrt{c}\)
Mình sẽ chứng minh BĐT bên trên, BĐT tương đương:
\(\sqrt{\frac{1}{bc}+\frac{1}{a}}+\sqrt{\frac{1}{ac}+\frac{1}{b}}+\sqrt{\frac{1}{ab}+\frac{1}{c}}\ge1+\sqrt{\frac{1}{bc}}+\sqrt{\frac{1}{ac}}+\sqrt{\frac{1}{ab}}\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=1\)
Ta cần chứng minh:
\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
Thật vậy:
\(\sqrt{x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+z\right)\left(x+y\right)}\ge x+\sqrt{yx}\)
Làm tương tự và cộng lại:
\(VT\ge x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\) hay \(a=b=c=3\)