Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. BĐT ban đầu
<=> \(\left(\frac{1}{3}-\frac{b}{a+3b}\right)+\left(\frac{1}{3}-\frac{c}{b+3c}\right)+\left(\frac{1}{3}-\frac{a}{c+3a}\right)\ge\frac{1}{4}\)
<=>\(\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)
<=> \(\frac{a^2}{a^2+3ab}+\frac{b^2}{b^2+3bc}+\frac{c^2}{c^2+3ac}\ge\frac{3}{4}\)
Áp dụng BĐT buniacoxki dang phân thức
=> BĐT cần CM
<=> \(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ac\right)}\ge\frac{3}{4}\)
<=> \(a^2+b^2+c^2\ge ab+bc+ac\)luôn đúng
=> BĐT được CM
2) \(a+b+c\le ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)\(\Leftrightarrow\)\(\left(a+b+c\right)^2-3\left(a+b+c\right)\ge0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a+b+c-3\right)\ge0\)\(\Leftrightarrow\)\(a+b+c\ge3\)
ko mất tính tổng quát giả sử \(a\ge b\ge c\)
Có: \(3\le a+b+c\le ab+bc+ca\le3a^2\)\(\Leftrightarrow\)\(3a^2\ge3\)\(\Leftrightarrow\)\(a\ge1\)
=> \(\frac{1}{1+a+b}+\frac{1}{1+b+c}+\frac{1}{1+c+a}\le\frac{3}{1+2a}\le1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)
Ta có: \(\frac{1}{ab+a+2}=\frac{1}{\left(ab+1\right)+\left(a+1\right)}\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng cộng mẫu
Ta có: \(\frac{1}{\left(ab+1\right)+\left(a+1\right)}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{a+1}\right)\)
\(=\frac{1}{4}\left(\frac{abc}{ab+abc}+\frac{1}{a+1}\right)=\frac{1}{4}\left[\frac{abc}{ab\left(1+c\right)}+\frac{1}{a+1}\right]=\frac{1}{4}\left(\frac{c}{1+c}+\frac{1}{a+1}\right)\) (1)
CMT2 được: \(\frac{1}{bc+b+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{b+1}\right)\) (2)
\(\frac{1}{ca+c+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{c+1}\right)\) (3)
Cộng (1);(2) và (3) vế theo vế
Ta được: \(\frac{1}{ab+a+2}+\frac{1}{bc+b+2}+\frac{1}{ca+c+2}\le\frac{1}{4}\left[\left(\frac{c}{c+1}+\frac{1}{c+1}\right)+\left(\frac{a}{a+1}+\frac{1}{a+1}\right)+\left(\frac{b}{b+1}+\frac{1}{b+1}\right)\right]\)
\(=\frac{1}{4}.\left(1+1+1\right)=\frac{3}{4}\)
=> đpcm
a) Ta có BĐT:
\(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)ab\)
\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+c\right)\)
\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)
Tương tự cho 2 bất đẳng thức còn lại rồi cộng theo vế:
\(VT\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)
\(=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}=VP\)
Khi \(a=b=c\)
mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !
bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu
bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)
những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện
Để ý: \(ab+bc+ca=\frac{\left[\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)\right]}{2}\).
Do đó đặt \(a^2+b^2+c^2=x>0;a+b+c=y>0\). Bài toán được viết lại thành:
Cho \(y^2+5x=24\), tìm max:
\(P=\frac{x}{y}+\frac{y^2-x}{2}=\frac{5x}{5y}+\frac{y^2-x}{2}\)
\(=\frac{24-y^2}{5y}+\frac{y^2-\frac{24-y^2}{5}}{2}\)
\(=\frac{24-y^2}{5y}+\frac{3\left(y^2-4\right)}{5}\)\(=\frac{3y^3-y^2-12y+24}{5y}\)
Đặt \(y=t\). Dễ thấy \(12=3\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)=3t^2-5\left(ab+bc+ca\right)\)
Và dễ dàng chứng minh \(ab+bc+ca\le3\)
Suy ra \(3t^2=12+5\left(ab+bc+ca\right)\le27\Rightarrow t\le3\). Mặt khác do a, b, c>0 do đó \(0< t\le3\).
Ta cần tìm Max P với \(P=\frac{3t^3-t^2-12t+24}{5t}\)và \(0< t\le3\)
Ta thấy khi t tăng thì P tăng. Do đó P đạt giá trị lớn nhất khi t lớn nhất.
Khi đó P = 3. Vậy...
\(\sqrt{a+bc}=\sqrt{a\left(a+b+c\right)+bc}=\sqrt{a^2+ab+ac+bc}\)
\(=\sqrt{a\left(a+b\right)+c\left(a+b\right)}=\sqrt{\left(a+b\right)\left(a+c\right)}\)
\(\Rightarrow\frac{bc}{\sqrt{a+bc}}=\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}=\sqrt{\frac{b^2c^2}{\left(a+b\right)\left(a+c\right)}}\)
Áp dụng bđt Cô-si :
\(\sqrt{\frac{b^2c^2}{\left(a+b\right)\left(a+c\right)}}\le\frac{\frac{bc}{a+b}+\frac{bc}{a+c}}{2}\)
Chứng minh tương tự với các phân thức còn lại, cộng theo vế ta có :
\(VT\le\frac{\left(\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ac}{c+b}+\frac{ac}{a+b}+\frac{ab}{a+c}+\frac{ab}{b+c}\right)}{2}\)
\(=\frac{\frac{c\left(a+b\right)}{a+b}+\frac{b\left(a+c\right)}{a+c}+\frac{a\left(b+c\right)}{b+c}}{2}=\frac{a+b+c}{2}=\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
Vì abc = 1 nên ta có thể đặt \(\left(a;b;c\right)\rightarrow\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\). Khi đó:
\(VT=\Sigma_{cyc}\frac{1}{\sqrt{\frac{x}{z}+\frac{x}{y}+2}}=\Sigma_{cyc}\frac{\sqrt{yz}}{\sqrt{xy+xz+2yz}}\)
\(\Rightarrow VT^2\le\left(1+1+1\right)\left(\Sigma_{cyc}\frac{yz}{xy+xz+2yz}\right)\left(\text{ }\right)\)(Theo BĐT Cauchy-Schwarz)
\(\le\frac{3}{4}\left[\Sigma_{cyc}yz\left(\frac{1}{xy+yz}+\frac{1}{xz+yz}\right)\right]=\frac{3}{4}\left(\Sigma_{cyc}\frac{xy+yz}{xy+yz}\right)=\frac{9}{4}\)
\(\Rightarrow VT\le\frac{3}{2}\)
Đẳng thức xảy ra khi x = y = z hay a = b = c = 1
Bài làm:
Mk cx ko chắc nx nha !
\(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\)
\(=3-\left(\frac{a+b}{a+b+1}+\frac{b+c}{b+c+1}+\frac{c+a}{c+a+1}\right)\)(mk không biết cách viết nên ns nhé, tổng trong ngoặc { m, là
cái Tổng trong ngoặc dưới tổng có một dấu ngoặc nhọn, dưới dấu ngặc nhọn có M}
Áp dụng BĐT Cauchy-Schwarz:
\(M=\frac{\left(a+b\right)^2}{\left(a+b\right)\left(a+b+1\right)}+\frac{\left(b+c\right)^2}{\left(b+c\right)\left(b+c+1\right)}+\frac{\left(c+a\right)^2}{\left(c+a\right)\left(c+a+1\right)}\)\(\ge\frac{4\left(a+b+c\right)^2}{\left(a+b\right)\left(a+b+1\right)\left(b+c\right)\left(b+c+1\right)\left(c+a\right)\left(c+a+1\right)}\)
\(=\frac{4\left(a^2+b^2+c^2+2ab+2bc+2ca\right)}{2\left(a^2+b^2+c^2+ab+bc+ca\right)+2\left(a+b+c\right)}\ge\frac{4\left(a^2+b^2+c^2+2ab+2bc+2ca\right)}{2\left(a^2+b^2+c^2+ab+bc+ca\right)+2\left(ab+bc+ca\right)}\)
\(=2\)
(Do \(a+b+c\le ab+bc+ca\))
Vậy \(M\ge2\)
\(\Rightarrow\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}=3-M\le1\)(Đpcm)
Dấu ''='' xảy ra khi a=b=c=1
Chép bài à bn tại sao \(A=\frac{1}{a+b+1}\) thế 2 ở bên kia đ?
Hơn nữa bất đẳng thức bn sai bét rồi người ta bảo bất đẳng thức bên kia mà sao bạn cho tổng luôn
3- lấy đâu ra kết quả phải là \(2^2\)chứ
Nếu ghi sai đề bài là bn sai cả bài k chắc đ :)
Ngoài ra các tổng bên ngoặc k có 4 hay 2 gì hết sai hết r nhé
Akai Haruma
Lời giải:
\(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}=3-\underbrace{\left(\frac{a+b}{a+b+1}+\frac{b+c}{b+c+1}+\frac{c+a}{c+a+1}\right)}_{M}\)
Áp dụng BĐT Cauchy-Schwarz:
\(M=\frac{(a+b)^2}{(a+b)(a+b+1)}+\frac{(b+c)^2}{(b+c)(b+c+1)}+\frac{(c+a)^2}{(c+a)(c+a+1)}\geq \frac{4(a+b+c)^2}{(a+b)(a+b+1)+(b+c)(b+c+1)+(c+a)(c+a+1)}\)
\(=\frac{4(a^2+b^2+c^2+2ab+2bc+2ac)}{2(a^2+b^2+c^2+ab+bc+ac)+2(a+b+c)}\geq \frac{4(a^2+b^2+c^2+2ab+2bc+2ac)}{2(a^2+b^2+c^2+ab+bc+ac)+2(ab+bc+ac)}=2\) (do $a+b+c\leq ab+bc+ac$)
Vậy $M\geq 2$
$\Rightarrow \frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}=3-M\leq 1$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$