\(a+b+c=3\). Tìm giá trị nhỏ nhất của \(a^3+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Holder: \(\left(1^3+1^3+1^3\right)\left(1^3+1^3+1^3\right)\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)^3\)

\(\Rightarrow9\left(a^3+b^3+c^3\right)\ge27\Leftrightarrow a^3+b^3+c^3\ge3\)

"=" khi \(a=b=c=1\)

8 tháng 7 2020

\(P=\frac{16a}{3}+\frac{1}{b}+\frac{4}{4c}\ge\frac{16a}{9}+\frac{16a}{9}+\frac{16a}{9}+\frac{9}{b+4c}\ge4\sqrt[4]{\frac{4096}{81}.\frac{a^3}{b+4c}}=\frac{32}{3}\)

"=" \(\Leftrightarrow\)\(\left(a;b;c\right)=\left(\frac{3}{2};\frac{9}{8};\frac{9}{16}\right)\)

20 tháng 8 2020

Chắc áp dụng được Cauchy-Schwarz

24 tháng 11 2020

Ta có: \(\sqrt[3]{\left(a+b\right).\frac{2}{3}.\frac{2}{3}}\le\frac{a+b+\frac{4}{3}}{3}=\frac{a+b}{3}+\frac{4}{9}\)

Tương tự rồi cộng các vế của BĐT lại, ta được: \(\sqrt[3]{\frac{4}{9}}P\le\frac{2\left(a+b+c\right)}{3}+\frac{4}{3}=2\Rightarrow P\le\sqrt[3]{18}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

17 tháng 8 2020

ta có \(T=\frac{1}{2}\left(1-\frac{a^2}{2+a^2}+1-\frac{b^2}{2+b^2}+1-\frac{c^2}{2+c^2}\right)=\frac{1}{2}\left[3-\left(\frac{a^2}{2+a^2}+\frac{b^2}{2+b^2}+\frac{c^2}{2+c^2}\right)\right]\)

ta chứng minh rằng \(\frac{a^2}{2+a^2}+\frac{b^2}{2+b^2}+\frac{c^2}{2+c^2}\ge1\)khi đó ta sẽ có \(T\le1\)

thật vậy, áp dụng Bất Đẳng Thức Cauchy-Schwarz ta có \(\frac{a^2}{2+a^2}+\frac{b^2}{2+b^2}+\frac{c^2}{2+c^2}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}\)

ta cần chứng minh rằng \(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}\ge1\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge a^2+b^2+c^2+6\)

\(\Leftrightarrow ab+bc+ca\ge3\)

thật vậy, từ giả thiết ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le a+b+c\Leftrightarrow ab+bc+ca\le abc\left(a+b+c\right)\left(1\right)\)

mà \(abc\left(a+b+c\right)\le\frac{\left(ab+bc+ca\right)^2}{3}\)

từ (1) ta có \(\frac{ab+bc+ca}{3}\le\frac{\left(ab+bc+ca\right)^2}{3}\Leftrightarrow ab+bc+ca\ge3\left(đpcm\right)\)

vậy maxT=1 khi a=b=c=1

5 tháng 12 2019

\(\frac{a^3}{\sqrt{b^2+3}}+\frac{a^3}{\sqrt{b^2+3}}+\frac{b^2+3}{8}\ge\frac{3}{2}a^2\)\(\Leftrightarrow\)\(\frac{a^3}{\sqrt{b^2+3}}\ge\frac{3}{4}a^2-\frac{1}{16}b^2-\frac{3}{16}\)

\(P=\Sigma\frac{a^3}{\sqrt{b^2+3}}\ge\frac{3}{4}\left(a^2+b^2+c^2\right)-\frac{1}{16}\left(a^2+b^2+c^2\right)-\frac{9}{16}=\frac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=1 

5 tháng 12 2019

different way

Ta co:

\(\text{ }P=\Sigma_{cyc}\frac{a^3}{\sqrt{b^2+3}}\ge\Sigma_{cyc}\frac{\left(a^2+b^2+c^2\right)^2}{\Sigma_{cyc}a\sqrt{b^2+3}}\ge\frac{9}{\sqrt{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2+9\right)}}=\frac{3}{2}\)

Dau '=' xay ra khi \(a=b=c=1\)

24 tháng 5 2018

Ta có \(\dfrac{a^2}{a+b^2}=a-\dfrac{ab^2}{a+b^2}\ge a-\dfrac{ab^2}{2b\sqrt{a}}=a-\dfrac{ab}{2\sqrt{a}}\)

Thiết lập tương tự và thu lại ta có :

\(VT\ge3-\left(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}\right)\)

Xét \(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}=\sqrt{\dfrac{a^2b^2}{4a}}+\sqrt{\dfrac{b^2c^2}{4b}}+\sqrt{\dfrac{a^2c^2}{4c}}\)

Áp dụng bđt Cauchy ta có \(\sqrt{\dfrac{a^2b^2}{4a}}=\sqrt{\dfrac{ab}{2a}.\dfrac{ab}{2}}\le\dfrac{\dfrac{b}{2}+\dfrac{ab}{2}}{2}\)

Thiết lập tương tự và thu lại ta có :

\(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}\le\dfrac{\dfrac{a+b+c}{2}+\dfrac{ab+bc+ac}{2}}{2}=\dfrac{\dfrac{3}{2}+\dfrac{ab+bc+ac}{2}}{2}\left(1\right)\)

Theo hệ quả của bđt Cauchy ta có \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

\(\Rightarrow ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}=3\)

\(\Rightarrow\dfrac{\dfrac{3}{2}+\dfrac{ab+bc+ac}{2}}{2}\le\dfrac{\dfrac{3}{2}+\dfrac{3}{2}}{2}=\dfrac{3}{2}\left(2\right)\)

Từ ( 1 ) và ( 2 ) ta có \(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}\le\dfrac{3}{2}\)

\(\Rightarrow3-\left(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}\right)\ge3-\dfrac{3}{2}=\dfrac{3}{2}\)

\(\Rightarrow VT\ge\dfrac{3}{2}\left(đpcm\right)\)

Dấu '' = '' xảy ra khi \(a=b=c=1\)

25 tháng 5 2018

Thanks you.!!!hiuhiu

Bài 1: Cho x,y, z > 0 thỏa mãn xyz = 1. Chứng minh rằng: \(\dfrac{\sqrt{1+x^3+y}^3}{xy}\)+ \(\dfrac{\sqrt{1+x^3+z^3}}{xz}\)+ \(\dfrac{\sqrt{1+y^3+z^3}}{yz}\) ≥ \(3\sqrt{3}\) Bài 2: Choa, b, c,d > 0 thỏa mãn abcd = 1. CMR: 1) \(\dfrac{a^3}{c^6}\)+ \(\dfrac{c^3}{a^6}\)+ \(\dfrac{b^3}{d^6}\)+ \(\dfrac{d^3}{b^6}\) ≥ \(\dfrac{a^2}{c}\)+ \(\dfrac{c^2}{a}+\dfrac{b^2}{d}+\dfrac{d^2}{b}\) 2) \(\dfrac{a^5b^4}{c^{13}}\) + \(\dfrac{b^5c^4}{d^{13}}\) + \(\dfrac{c^5d^4}{a^{13}}\)+...
Đọc tiếp

Bài 1: Cho x,y, z > 0 thỏa mãn xyz = 1.

Chứng minh rằng:

\(\dfrac{\sqrt{1+x^3+y}^3}{xy}\)+ \(\dfrac{\sqrt{1+x^3+z^3}}{xz}\)+ \(\dfrac{\sqrt{1+y^3+z^3}}{yz}\)\(3\sqrt{3}\)

Bài 2: Choa, b, c,d > 0 thỏa mãn abcd = 1. CMR:

1) \(\dfrac{a^3}{c^6}\)+ \(\dfrac{c^3}{a^6}\)+ \(\dfrac{b^3}{d^6}\)+ \(\dfrac{d^3}{b^6}\)\(\dfrac{a^2}{c}\)+ \(\dfrac{c^2}{a}+\dfrac{b^2}{d}+\dfrac{d^2}{b}\)

2) \(\dfrac{a^5b^4}{c^{13}}\) + \(\dfrac{b^5c^4}{d^{13}}\) + \(\dfrac{c^5d^4}{a^{13}}\)+ \(\dfrac{d^5a^4}{b^{13}}\)\(\dfrac{ab^2}{c^3}+\dfrac{bc^2}{d^3}+\dfrac{cd^2}{a^3}\)+ \(\dfrac{da^2}{b^3}\)

Bài 3: Cho a, b,c ,d > 0. CMR:

\(\dfrac{a^2}{b^5}+\dfrac{b^2}{c^5}+\dfrac{c^2}{d^5}+\dfrac{d^2}{a^5}\)\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}+\dfrac{1}{d^3}\)

Bài 4: tìm giá trị nhỏ nhất của biểu thức:

A= x + y biết x, y > 0 thỏa mãn \(\dfrac{2}{x}+\dfrac{3}{y}\) = 1

B= \(\dfrac{ab}{a^2+b^2}\) + \(\dfrac{a^2+b^2}{ab}\) với a, b > 0

Bài 5: Với x > 0, chứng minh rằng:

( x+2 )2 + \(\dfrac{2}{x+2}\) ≥ 3

Giúp mk với, mai mk phải kiểm tra rồi!!

4
AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Câu 1:

Áp dụng BĐT Cauchy:

\(1+x^3+y^3\geq 3\sqrt[3]{x^3y^3}=3xy\)

\(\Rightarrow \frac{\sqrt{1+x^3+y^3}}{xy}\geq \frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)

Hoàn toàn tương tự:

\(\frac{\sqrt{1+y^3+z^3}}{yz}\geq \sqrt{\frac{3}{yz}}; \frac{\sqrt{1+z^3+x^3}}{xz}\geq \sqrt{\frac{3}{xz}}\)

Cộng theo vế các BĐT thu được:

\(\text{VT}\geq \sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{xz}}\geq 3\sqrt[6]{\frac{27}{x^2y^2z^2}}=3\sqrt[6]{27}=3\sqrt{3}\) (Cauchy)

Ta có đpcm

Dấu bằng xảy ra khi $x=y=z=1$

AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Câu 4:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{2}{x}+\frac{3}{y}\right)(x+y)\geq (\sqrt{2}+\sqrt{3})^2\)

\(\Leftrightarrow 1.(x+y)\geq (\sqrt{2}+\sqrt{3})^2\Rightarrow x+y\geq 5+2\sqrt{6}\)

Vậy \(A_{\min}=5+2\sqrt{6}\)

Dấu bằng xảy ra khi \(x=2+\sqrt{6}; y=3+\sqrt{6}\)

------------------------------

Áp dụng BĐT Cauchy:

\(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{4ab}\geq 2\sqrt{\frac{ab}{a^2+b^2}.\frac{a^2+b^2}{4ab}}=1\)

\(a^2+b^2\geq 2ab\Rightarrow \frac{3(a^2+b^2)}{4ab}\geq \frac{6ab}{4ab}=\frac{3}{2}\)

Cộng theo vế hai BĐT trên:

\(\Rightarrow B\geq 1+\frac{3}{2}=\frac{5}{2}\) hay \(B_{\min}=\frac{5}{2}\). Dấu bằng xảy ra khi $a=b$