Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
MIN A= \(\frac{b^2}{a^2}+\frac{c^2}{a^2}+\frac{a^2}{b^2}+\frac{c^2}{a^2}\)
áp dụng bất đẳng thức 2 số đố nhau luôn lớn hơn hoặc =2
suy ra MIN A =2+2=4
B2:Áp dụng cô si ta có:\(ab\le\frac{\left(a+b\right)^2}{4}=\frac{1}{4}\)
Ta có \(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+4\left(1\right)\)
Từ \(\left(1\right)\)suy ra BĐT tương đương với \(a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}\ge\frac{17}{2}\)
Ta có \(a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}=\left(a+b\right)^2-2ab+\frac{\left(a+b\right)^2-2ab}{a^2b^2}\)Mà \(ab\le\frac{1}{4}\)
Nên \(\hept{\begin{cases}\left(a+b\right)^2-2ab=1-2.\frac{1}{4}=\frac{1}{2}\left(2\right)\\\frac{\left(a+b\right)^2-2ab}{a^2b^2}\ge\frac{\frac{1}{2}}{\frac{1}{16}}=8\left(3\right)\end{cases}}\)
Cộng \(\left(2\right)vs\left(3\right)\)lại ta thu được \(đpcm\)
Dấu \(=\)xảy ra khi \(a=b=\frac{1}{2}\)
abc = 1 \(\Rightarrow\frac{1}{abc}=1\Rightarrow xyz=1\)
Đặt \(a=\frac{1}{x}\); \(b=\frac{1}{y}\); \(c=\frac{1}{z}\)(x, y, z > 0)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{a^3}=x^3\\\frac{1}{b+c}=\frac{1}{\frac{1}{y}+\frac{1}{z}}=\frac{1}{\frac{y+z}{yz}}=\frac{yz}{y+z}\end{cases}\Leftrightarrow\frac{1}{a^3\left(b+c\right)}=\frac{x^3yz}{y+z}=\frac{x^2}{y+z}}\)
Tương tự, ta có :
\(\frac{1}{b^3\left(a+c\right)}=\frac{y^2}{z+x}\)
\(\frac{1}{c^3\left(a+b\right)}=\frac{z^2}{x+y}\)
Ta cần cm : \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{3}{2}\)
Áp dụng bđt Cau chy cho x, y, z > 0
\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{4}}=x\)
\(\frac{y^2}{z+x}+\frac{z+x}{4}\ge y\)
\(\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)
\(\Leftrightarrow\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}\)
Ta cần cm : \(\frac{x+y+z}{2}\ge\frac{3}{2}\)
\(\Leftrightarrow x+y+z\ge3\)
Áp dụng bđt Cauchy cho x, y, z> 0
\(x+y+z\ge3\sqrt[3]{xyz}=3\)
trong tập chuyên đề về Svac-xơ cũng có câu này , còn về cách chứng minh thì easy lắm
Do \(abc=1\)Nên có thể viết lại bđt cần chứng minh trở thành :
\(\frac{a^2b^2c^2}{a^3\left(b+c\right)}+\frac{a^2b^2c^2}{b^3\left(a+c\right)}+\frac{a^2b^2c^2}{c^3\left(a+b\right)}\ge\frac{3}{2}\)
\(< =>\frac{b^2c^2}{a\left(b+c\right)}+\frac{a^2c^2}{b\left(a+c\right)}+\frac{a^2b^2}{c\left(a+b\right)}\ge\frac{3}{2}\)
Sử dụng bất đẳng thức Svac-xơ ta có :
\(\frac{b^2c^2}{a\left(b+c\right)}+\frac{a^2c^2}{b\left(a+c\right)}+\frac{a^2b^2}{c\left(a+b\right)}\ge\frac{\left(ab+bc+ca\right)^2}{ab+ac+ba+bc+ca+cb}\)
\(=\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)
Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(ab+bc+ca\ge3\), thật vậy :
Sử dụng bất đẳng thức AM-GM cho 3 số thực dương ta có :
\(ab+bc+ca\ge3\sqrt[3]{abbcca}=3\sqrt[3]{a^2b^2c^2}=3\left(đpcm\right)\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\)
mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !
bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu
bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)
những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện
\(y=\frac{1}{x^2+\sqrt{x}}\)\(y=\frac{1}{x^2+\sqrt{x}}\)