\(\frac{-a+b+c}{2a}+\frac{a-b+c}{2b}+\frac{a+b-c}{2c}>=\frac{3}{2}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2019

<=> \(\frac{b+c-a}{2a}+1+\frac{a-b+c}{2b}+1+\frac{a+b-c}{2c}+1\ge\frac{3}{2}+3\)

<=> \(\frac{a+b+c}{2c}+\frac{a+b+c}{2b}+\frac{a+b+c}{2c}\ge\frac{9}{2}\)

<=> \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

<=> \(\frac{a}{a}+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{b}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+\frac{c}{c}\ge9\)

<=> \(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge6\)

Ap dung bdt  \(\frac{a}{b}+\frac{b}{a}\ge2\)

Suy ra ve trai >= 2.3=6=ve phai

=> DPCM

Dau = xay ra <=> a=b=c

mik phai di hoc nen tra loi tat mong ban thong cam

16 tháng 9 2019

cảm ơn nhiều ạ

NV
27 tháng 4 2019

1.

\(P=\frac{a^4}{abc}+\frac{b^4}{abc}+\frac{c^4}{abc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{3abc}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\left(a+b+c\right)}{3abc\left(a+b+c\right)}\)

\(P\ge\frac{\left(a^2+b^2+c^2\right).3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}{3abc\left(a+b+c\right)}=\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)

Dấu "=" khi \(a=b=c\)

2.

\(P=\sum\frac{a^2}{ab+2ac+3ad}\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{\left(a+b+c+d\right)^2}{4.\frac{3}{8}\left(a+b+c+d\right)^2}=\frac{2}{3}\)

Dấu "=" khi \(a=b=c=d\)

Y
27 tháng 4 2019

Thục Trinh, tran nguyen bao quan, Phùng Tuệ Minh, Ribi Nkok Ngok, Lê Nguyễn Ngọc Nhi, Tạ Thị Diễm Quỳnh,

Nguyễn Huy Thắng, ?Amanda?, saint suppapong udomkaewkanjana

Help me!

23 tháng 1 2019

cái này sai rồi nha.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

23 tháng 1 2019

toán lớp 9 chơ

9 tháng 2 2020

\(\frac{a^3}{bc}+\frac{b^3}{ca}=\frac{a^4}{abc}+\frac{b^4}{abc}\ge\frac{\left(a^2+b^2\right)^2}{2abc}\ge\frac{2ab\left(a^2+b^2\right)}{2abc}=\frac{a^2+b^2}{c}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

viết các bđt tương tự rồi cộng vế theo vế là được

28 tháng 1 2020

a,b,c > 0 nên 2a + b >0; 2b + c > 0; 2c + a > 0

Áp dụng BĐT Cauchy- schwarz:

\(VT=\text{Σ}_{cyc}\frac{1}{2a+b}\ge\frac{9}{3\left(a+b+c\right)}=\frac{3}{a+b+c}\)

Dấu "=" xảy ra khi a = b = c

8 tháng 5 2017

ta có \(a^2+2b^2+3=a^2+b^2+b^2+1+2.\)

áp dụng BĐT cauchy

=>\(a^2+2b^2+3>=2ab+2b+2=2\left(ab+b+1\right)\)

=>\(\frac{1}{a^2+2b^2+3}< =\frac{1}{2\left(ab+b+1\right)}\)

tương tự ta có \(\hept{\frac{1}{b^2+2c^2+3}< =\frac{1}{2\left(bc+c+1\right)}}\),\(\frac{1}{c^2+2a^2+3}< =\frac{1}{2\left(ac+a+1\right)}\)

=>VT<=\(\frac{1}{2}.\left(\frac{1}{ab+b+1}+\frac{1}{ac+a+1}+\frac{1}{bc+c+1}\right)\)

<=>VT<=\(\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{abc}{ac+a^2bc+abc}+\frac{abc}{bc+c+abc}\right)\)(do abc=1)

<=>VT<=\(\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{b}{ab+b+1}+\frac{ab}{ab+b+1}\right)\)=\(\frac{1}{2}\left(\frac{ab+b+1}{ab+b+1}\right)=\frac{1}{2}\)(đpcm)

Dấu bằng xảy ra khi a=b=c=1

8 tháng 5 2017

1/(a^2+2b^2+3)+1/(b^2+2c^2+3)+1/(c^2+2a^2+3)

Tại có: abc=1 =>a=1;b=1;c=1.

Syu ra: 1/(1+2.1+3)+1/(1+2.1+3)+1/(1+2.1+3)

=1/6+1/6+1/6=1/2

=>1/(a^2+2b^2+3)+1/(b^2+2c^2+3)+1/(c^2+2a^2+3) \(\le\)1/2

=> đpcm

AH
Akai Haruma
Giáo viên
30 tháng 5 2020

Lời giải:

Áp dụng BĐT Bunhiacopkxy:

\((2a^2+b^2)(2a^2+c^2)=(a^2+a^2+b^2)(a^2+c^2+a^2)\geq (a^2+ac+ab)^2\)

\(=[a(a+b+c)]^2\)

\(\Rightarrow \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a^3}{[a(a+b+c)]^2}=\frac{a}{(a+b+c)^2}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế thu được:

\(\sum \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a+b+c}{(a+b+c)^2}=\frac{1}{a+b+c}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

6 tháng 7 2016

Trả lời hộ mình đi