Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a +b +c = 0 => a + b = - c
Ta có
a^3 + b^3 + c^3 = ( a + b)^3 - 3ab( a+b) + c^3
Thay a+ b= -c ta có
a^3 + b^3 + c^3 = -c^3 - 3ab.-c + c^3 = 3abc
=> ĐPCM
Ta có : \(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=\left[\left(a+b\right)^3\right]-3ab\left(a+b+c\right)\)\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
a3+b3+c3−3abca3+b3+c3−3abc
=a3+3ab(a+b)+b3+c3−3abc−3ab(a+b)=a3+3ab(a+b)+b3+c3−3abc−3ab(a+b)
=(a+b)3+c3−3ab(a+b+c)=(a+b)3+c3−3ab(a+b+c)
=(a+b+c)(a2+2ab+b2−ab−ac+c2)−3ab(a+b+c)=(a+b+c)(a2+2ab+b2−ab−ac+c2)−3ab(a+b+c)
=(a+b+c)(a2+b2+c2−ab−bc−ca)=(a+b+c)(a2+b2+c2−ab−bc−ca)
Xét tử thức của phân số \(M\) , ta có:
\(a^3+b^3+c^3-3abc\)
\(=a^3+3ab\left(a+b\right)+b^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(=\frac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)\)
\(=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\)
Do đó: \(M=\frac{1}{2}\left(a+b+c\right)=\frac{1}{2}.3=\frac{3}{2}\)
Ta có:
\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)
\(=a^3+b^3+3a^2b+3ab^2\)
\(=a^3+b^3+3ab\left(a+b\right)\)
\(\Rightarrow a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
Thay vào \(a^3+b^3+c^3=0\), ta được:
\(VT=a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3\)
Vì \(a+b+c=0\)
\(\Rightarrow a+b=-c\)
\(\Leftrightarrow a^3+b^3+c^3=\left(-c\right)^{^3}-3ab\left(-c\right)+c^3\)
\(\Leftrightarrow a^3+b^3+c^3=\left(-c\right)^3+c^3+3abc\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
\(\RightarrowĐPCM\).
ta có a+b+c=0
=>a+b=-c
=>c=-(a+b)
thay -(a+b)=c vào vt ta đc
a3+b3-(a+b)3
=a3+b3-(a3+3a2b+3ab2+b3)
=a3+b3-a3-3a2b-3ab2-b3
=(a3-a3)+(b3-b3)+(-3a2b-3ab2)
=0+0+3ab(-a-b)
=3ab[-(a+b)] (thay -(a+b)=c)
=3abc(đpcm)
khánh hòa 5b ơi tớ yêu bạn từ lúc mới gặp bạn ở trường mầm non bạn chấp nhận làm bạn gái tớ nhé lê hồng huy lớp 5a
Ta có :(a+b+c)3=a3+b3+c3+3a2b+3a2c+3b2c+3b2a+3c2a+3c2b+6abc
\(\Leftrightarrow\) (a+b+c)3=a3+b3+c3+(3a2b+3a2b+3abc)+(3b2c+3b2a+3abc)+(3c2a+3c2b+3abc)-3abc
\(\Leftrightarrow\) (a+b+c)3=a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)-3abc
\(\Leftrightarrow\) (a+b+c)3=a3+b3+c3+3(a+b+c)(ab+bc+ac)-3abc(1)
Vì a+b+c=0.PT (1) có dạng
\(\Leftrightarrow\) 03=a3+b3+c3+3.0(ab+bc+ac)-3abc
\(\Leftrightarrow\) 0=a3+b3+c3-3abc
=>a3+b3+c3=3abc(đpcm)
Ta có: \(a+b+c=0\)
\(\Rightarrow a+b=-c\) (1)
\(\Rightarrow\left(a+b\right)^3=\left(-c\right)^3\)
\(a^3+3a^2b+3ab^2+b^3=-c^3\)
\(a^3+b^3+c^3+3ab.\left(a+b\right)=0\)(2)
Thay (1) vào (2) ta có:
\(a^3+b^3+c^3+3ab.\left(-c\right)=0\)
\(a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\)\(a^3+b^3+c^3=3abc\)
đpcm
Tham khảo nhé~
\(a+b+c=0\)
\(\Rightarrow a+b=-c\)
\(\Rightarrow\left(a+b\right)^3=\left(-c\right)^3\)
\(\Rightarrow a^3+3a^2b+3ab^2+b^3=\left(-c\right)^3\)
\(\Rightarrow a^3+b^3+c^3=-3a^2b-3ab^2\)
\(\Rightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
Mà \(a+b=-c\)
\(\Rightarrow a^3+b^3+c^3=-3ab\left(-c\right)=3abc\left(đpcm\right)\)
#)Giải :
Ta có : \(a+b+c=0\)
\(\Rightarrow a+b=-c\)
\(\Rightarrow\left(a+b\right)^3=-c^3\)
\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3=-c\)
\(\Leftrightarrow a^3+b^3+c^3=-3a^2b-3ab^2\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
Vì \(a+b=-c\Rightarrow a^3+b^3+c^3=3abc\left(đpcm\right)\)
Ta có:
\(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^3=0\)
\(\Rightarrow a^3+b^3+c^3+3a^2b+3ab^2+3b^2c+3bc^2+3a^2c+3ac^2+6abc=0\)
\(\Rightarrow a^3+b^3+c^3+\left(3a^2b+3ab^2+3abc\right)+\left(3b^2c+3bc^2+3abc\right)+\left(3a^2c+3ac^2+3abc\right)-3abc=0\)
\(\Rightarrow a^3+b^3+c^3+3ab\left(a+b+c\right)+3bc\left(a+b+c\right)+3ac\left(a+b+c\right)-3abc=0\)
\(\Rightarrow a^3+b^3+c^3+3\left(a+b+c\right)\left(ab+bc+ac\right)=3abc\)
Vì a + b + c = 0
\(\Rightarrow a^3+b^3+c^3=3abc\)
Do \(3abc⋮3abc\)
\(\Rightarrow a^3+b^3+c^3⋮3abc\)
Ta có a,b,c dương nên ta áp dụng Bđt Cô-si ta có:
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)
Dấu = khi \(a=b=c\)
Đpcm
\(a^3+b^3+c^3=3abc\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Rightarrow\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab\right]=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(\Rightarrow\left(a+b+c\right)\frac{1}{2}\left(2a^2+2b^2+2c^2-2ab-2ac-2bc\right)=0\)
\(\Rightarrow\left(a+b+c\right)\frac{1}{2}\left(a^2-2ab+b^2\right)\left(b^2-2bc+c^2\right)\left(c^2-2ac+a^2\right)=0\)
\(\Rightarrow\left(a+b+c\right)\frac{1}{2}\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0.\)
vì \(\left(a-b\right)^2\ge0\)
\(\left(b-c\right)^2\ge0\)
\(\left(c-a\right)^2\ge0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow a-b=b-c=c-a\)
\(\Rightarrow a=b=c\left(dpcm\right)\)
a +b +c=0
⇔\(\left(a+b+c\right)^3\)
⇔\(a^3+b^3+c^3+3a^2b+3ab^2+3b^2c+3bc^2+3a^2c+3ac^2+6abc=0\)
⇔\(a^3+b^3+c^3+\left(3a^2b+3ab^2+3abc\right)+\left(3b^2c+3bc^2+3abc\right)+\left(3a^2c+3ac^2+3abc\right)-3abc=0\)
⇔ \(a^3+b^3+c^3+3ab\left(a+b+c\right)+3bc\left(a+b+c\right)+3ac\left(a+b+c\right)=3abc\)
Vì a+b+c= 0
⇒\(a^3+b^3+c^3=3abc\)
Chúc bạn học tốt!