\(\frac{a}{c+a}+\frac{b}{a+b}+\frac{c}{b+c}< 2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2019

Ta có : \(\frac{a}{c+a}+\frac{b}{a+b}+\frac{c}{b+c}< \frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{c+a}{a+b+c}=2\left(đpcm\right)\)

28 tháng 7 2019

Vì  \(a,b,c>0\) nên ta có:

\(\frac{a}{a+b}< \frac{a+c}{a+b+c}\)

\(\frac{b}{b+c}< \frac{a+b}{a+b+c}\)

\(\frac{c}{c+a}< \frac{b+c}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}\)

\(\Rightarrow M< \frac{a+c+a+b+b+c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

27 tháng 7 2019

#)Góp ý :

dao xuan tung đề lỗi ak bn ?

a) vô lí vì \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
 

27 tháng 7 2019

Ko phải đâu hai đề khác nhau nha

25 tháng 10 2017

\(\frac{a}{b}< \frac{c}{d}\)

\(\Rightarrow ad< bc\)

\(\Rightarrow ab+ad< bc+ab\)

\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)( 1 )

Lại có : ad < bc

\(\Rightarrow ad+cd< bc+cd\)

\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

9 tháng 2 2017

\(\frac{a}{b}< \frac{c}{d}\)

\(\Leftrightarrow ad< bc\)

\(\Leftrightarrow ad+ab< bc+ab\)

\(\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)

\(\frac{a}{b}< \frac{c}{d}\)

\(\Leftrightarrow ad< bc\)

\(\Leftrightarrow ad+cd< bc+cd\)

\(\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\) (2)

Từ (1) ; (2) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\) (đpcm)

26 tháng 8 2020

Gỉa sử : \(\frac{a}{b}< \frac{a+c}{b+c}< =>ab+ac< ab+bc\)

\(< =>ac< bc< =>a< b\)(đpcm)

Gỉa sử : \(\frac{a}{b}>\frac{a+c}{b+c}< =>ab+ac>ab+bc\)

\(< =>ac>bc< =>a>b\)(đpcm)

27 tháng 8 2018

Đặt \(\hept{\begin{cases}\frac{a}{b}=k\Rightarrow a=bk\\\frac{c}{d}=q\Rightarrow c=dq\end{cases}}\)

a) Thay a và c vào biểu thức ta có :

\(\frac{bk}{b}< \frac{dq}{d}\Rightarrow k< q\)

=> ad ... bc

=> bkd ... bdq

=> k ... q

=> k < q

=> đpcm

b) tương tự thay a và c vào

1 tháng 7 2016

Vì  \(\frac{a}{b}\)  < \(\frac{c}{d}\)  nên ad < bc         (1)

Xét tích a(b + d) = ab + ad          (2)

             b ( a + c ) = ba + bc        (3)

Từ (1);(2);(3) suy ra a(b+d) < b(a+c)   do đó  \(\frac{a}{b}\)  < \(\frac{a+c}{b+d}\)        (4)

Tương tự ta có \(\frac{a+c}{b+d}\)    <  \(\frac{c}{d}\)   (5)

kết hợp (4) ; (5) ta được \(\frac{a}{b}\)  < \(\frac{a+c}{b+d}\)  < \(\frac{c}{d}\)  

28 tháng 10 2016

\(\frac{a}{b}< \frac{c}{d}=>ad< bc\)

=>ad+ab<bc+ab

=>a(b+d)<b(a+c)

=>\(\frac{a}{b}< \frac{a+c}{b+d}\) (1)

\(\frac{a}{b}< \frac{c}{d}=>ad< bc\)

=>ad+cd<bc+cd

=>a(a+c)<c(b+d)

=>\(\frac{a+c}{b+d}< \frac{c}{d}\) (2)

từ (1)(2)=>\(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

chúc bạn học tốtok

29 tháng 7 2018

a, \(\frac{a}{b}=\frac{ad}{bd};\frac{c}{d}=\frac{bc}{bd}\)

Mà \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow ad< bc\)

b, Theo câu a ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\Rightarrow ad+ab< bc+ab\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)

Lại có: \(ad< bc\Rightarrow ad+cd< bc+cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)

Từ (1) và (2) => đpcm

31 tháng 8 2018

a, \(\frac{a}{b}=\frac{ad}{bd};\frac{c}{d}=\frac{bc}{bd}\)

Mà \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow ad< bc\)

b, Theo câu a, ta có:

\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\Rightarrow ad+ab< bc+ab\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)(1)

Lại có: \(ad< bc\Rightarrow ad+cd< bc+cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)(2)

Từ (1) và (2) => đpcm.