\(a,b,c>0\). Chứng minh rằng: \(\sqrt{\dfrac{a}{b+c}}+\sqrt{\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 1 2024

\(\sqrt{\dfrac{a}{b+c}}=\dfrac{a}{\sqrt{a}.\sqrt{b+c}}=\dfrac{2a}{2\sqrt{a}.\sqrt[]{b+c}}\ge\dfrac{2a}{a+b+c}\)

Tương tự:

\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c}\) ; \(\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)

Cộng vế:

\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2a+2b+2c}{a+b+c}=2\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=b+c\\b=c+a\\c=a+b\end{matrix}\right.\) \(\Rightarrow a+b+c=0\) (không tồn tại do a;b;c dương)

\(\Rightarrow\) Dấu "=" không xảy ra

Nên \(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)

31 tháng 3 2017

Bài 2:

\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)

Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)

\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:

\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)

Thiết lập các BĐT tương tự:

\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)

Dấu "=" không xảy ra nên ta có ĐPCM

Lưu ý: lần sau đăng từng bài 1 thôi nhé !

31 tháng 3 2017

1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:

\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)

TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)

\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)

Cộng vế với vế ta được:

\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)

11 tháng 1 2018

Ta co : √a/√(b+c)=a/√a.(b+c)=2a/2√a.(b+c)≥2a/(a+b+c)

Vi a,b,c>0 nen √a/√(b+c)>2a/(a+b+c)

Tuong tu √b/√(b+c)>2b(a+b+c)

√c/√(a+b)>2c/(a+b+c)

=> VT>2a/(a+b+c) + 2b/(a+b+c) + 2c/(a+b+c)=2.(a+b+c)/(a+b+c)=2

13 tháng 7 2017

2, a, \(a+\dfrac{1}{a}\ge2\)

\(\Leftrightarrow\dfrac{a^2+1}{a}\ge2\)

\(\Rightarrow a^2-2a+1\ge0\left(a>0\right)\)

\(\Leftrightarrow\left(a-1\right)^2\ge0\)( là đt đúng vs mọi a)

vậy...................

13 tháng 7 2017

Câu 1:

\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)

\(=\sqrt{4+5}=3\)

\(M=\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{5-\sqrt{3-2\sqrt{5}+3}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\sqrt{5-\sqrt{5}+1}=\sqrt{6-\sqrt{5}}\)

NV
30 tháng 1 2019

\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=a+b+c+2\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)=4\)

\(\Leftrightarrow\sqrt{ab}+\sqrt{ac}+\sqrt{bc}=1\)

\(\Rightarrow a+1=a+\sqrt{ab}+\sqrt{ac}+\sqrt{bc}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)

Tương tự: \(b+1=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\)

\(c+1=\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)\)

\(VT=\sum\dfrac{\sqrt{a}}{a+1}=\sum\dfrac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}\)

\(=\dfrac{\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)+\sqrt{b}\left(\sqrt{a}+\sqrt{c}\right)+\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}\)

\(=\dfrac{2\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}=\dfrac{2}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}\)

\(VP=\dfrac{2}{\sqrt{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}=\dfrac{2}{\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2\left(\sqrt{a}+\sqrt{c}\right)^2\left(\sqrt{b}+\sqrt{c}\right)^2}}\)

\(=\dfrac{2}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}\)

\(\Rightarrow VT=VP\) (đpcm)

17 tháng 6 2018

a) CM:\(\sqrt{\left(n+1\right)^2}+\sqrt{n^2}=\left(n+1\right)^2-n^2\)

\(\Leftrightarrow n+1+n=\left(n+1-n\right)\left(n+1+n\right)\)

\(\Leftrightarrow2n+1=1\left(2n+1\right)\)

\(\Leftrightarrow2n+1=2n+1\)

\(\Rightarrow\sqrt{\left(n+1\right)^2}+\sqrt{n^2}=\left(n+1\right)^2-n^2\)

17 tháng 6 2018

Câu b) ý 2:

Áp dụng BĐT cô si ta có :

\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\\ \dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\\ \dfrac{c}{a}+\dfrac{a}{b}\ge2\sqrt{\dfrac{c}{b}}\\ \Leftrightarrow2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\ge2\left(\sqrt{\dfrac{a}{c}}+\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}\right)\\ \Rightarrowđpcm\)

AH
Akai Haruma
Giáo viên
31 tháng 8 2017

Lời giải:

Đặt \(\left ( \sqrt{\frac{a}{b+c}},\sqrt{\frac{b}{a+c}},\sqrt{\frac{c}{a+b}} \right )=(x,y,z)\)

\(\Rightarrow \left\{\begin{matrix} x^2=\frac{a}{b+c}\\ y^2=\frac{b}{a+c}\\ z^2=\frac{c}{a+b}\end{matrix}\right.\Rightarrow \frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}=2\)

\(\Leftrightarrow (1-\frac{1}{x^2+1})+(1-\frac{1}{y^2+1})+(1-\frac{1}{z^2+1})=1\)

\(\Leftrightarrow \frac{x^2}{x^2+1}+\frac{y^2}{y^2+1}+\frac{z^2}{z^2+1}=1\)

BĐT cần chứng minh tương đương:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq 2(x+y+z)(\star)\)

Áp dụng BĐT Bunhiacopxky:

\(\left ( \frac{x^2}{x^2+1}+\frac{y^2}{y^2+1}+\frac{z^2}{z^2+1} \right )(x^2+1+y^2+1+z^2+1)\geq (x+y+z)^2\)

\(\Leftrightarrow x^2+1+y^2+1+z^2+1\geq (x+y+z)^2\)

\(\Leftrightarrow xy+yz+xz\leq \frac{3}{2}\)

Kết hợp với hệ quả của BĐT AM-GM :

\((xy+yz+xz)^2\geq 3xyz(x+y+z)\)

\(\Rightarrow xy+yz+xz\geq \frac{3xyz(x+y+z)}{xy+yz+xz}\geq \frac{3xyz(x+y+z)}{\frac{3}2{}}=2xyz(x+y+z)\)

\(\Leftrightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{2xyz(x+y+z)}{xyz}=2(x+y+z)\)

Do đó BĐT \((\star)\) được chứng minh.

Bài toán hoàn thành. Dấu bằng xảy ra khi \(a=b=c\)

13 tháng 7 2021

Đặt x=\sqrt{\dfrac{a}{b}},y=\sqrt{\dfrac{b}{c}},z=\sqrt{\dfrac{c}{a}}x=ba,y=cb,z=ac thì  x,y,z>0x,y,z>0 và xyz=1xyz=1 . Bất đẳng thức cần chứng minh trở thành      x^3+y^3+z^3\ge x^2+y^2+z^2x3+y3+z3x2+y2+z2.

Áp dụng bất đẳng thức Cô si cho 3 số dương ta có

                x^3+x^3+1^3\ge3\sqrt[3]{x^3.x^3.1^3}x3+x3+1333x3.x3.13 hay  2x^3+1\ge3x^22x3+13x2.

Tương tự, 2y^3+1\ge3y^2;2z^3+1\ge3z^22y3+13y2;2z3+13z2. Cộng theo vế các bất đẳng thức nhận được ta có            2\left(x^3+y^3+z^3\right)+3\ge2\left(x^2+y^2+z^2\right)+\left(x^2+y^2+z^2\right)2(x3+y3+z3)+32(x2+y2+z2)+(x2+y2+z2)

                                                      =2\left(x^2+y^2+z^2\right)+3\sqrt[3]{x^2y^2z^2}=2(x2+y2+z2)+33x2y2z2

  \ge2\left(x^2+y^2+z^2\right)+3\sqrt[3]{1}2(x2+y2+z2)+331

Do đó         x^3+y^3+z^3\ge x^2+y^2+z^2x3+y3+z3x2+y2+z2. Đẳng thức xảy ra khi và chỉ khi  

       x=y=z=1\Leftrightarrow a=b=c>0x=y=z=1a=b=c>0.

29 tháng 8 2021

x=y=z=1

Ko lq nhưng ta chuẩn hóa \(a+b+c=3\). So:

\(M\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{3}{2}\)