Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(a=b=c\) ta có:
\(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\ge1+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\Leftrightarrow1\ge2\)
Bất đẳng thức sai
Bạn tham khảo:
Câu hỏi của khoimzx - Toán lớp 9 | Học trực tuyến
\(VT=\frac{b^2c^2}{b+c}+\frac{a^2c^2}{a+c}+\frac{a^2b^2}{a+b}\ge\frac{\left(ab+bc+ca\right)^2}{2\left(a+b+c\right)}\ge\frac{3abc\left(a+b+c\right)}{2\left(a+b+c\right)}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Áp dụng bđt Cauchy-schwarz dạng engel ta có:
1. \(\frac{a^2}{a+2b}+\frac{b^2}{b+2c}+\frac{c^2}{c+2a}\ge\frac{\left(a+b+c\right)^2}{\left(a+2b\right)+\left(b+2c\right)+\left(c+2a\right)}=\frac{a+b+c}{3}\)
Dấu "=" \(\Leftrightarrow\frac{a}{a+2b}=\frac{b}{b+2c}=\frac{c}{c+2a}\Leftrightarrow a=b=c\)
2. \(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{\left(a+b+c\right)^2}{\left(2a+3b\right)+\left(2b+3c\right)+\left(2c+3a\right)}=\frac{a+b+c}{5}\)
Dấu "=" \(\Leftrightarrow a=b=c\)
Có: \(\frac{a^4}{b^2c}+\frac{b^4}{c^2a}+b\ge\frac{3ab}{c}\)
Tương tự, ta cũng được: \(\Sigma_{cyc}\frac{a^4}{b^2c}\ge\frac{3}{2}\Sigma_{cyc}\frac{ab}{c}-\frac{1}{2}\Sigma_{cyc}a\)
Cần CM: \(\Sigma_{cyc}\frac{ab}{c}\ge\Sigma_{cyc}a\)
Có: \(\frac{ab}{c}+\frac{bc}{a}\ge2b\)
Tương tự, ta có đpcm
Dấu "=" xảy ra khi a=b=c
Bài 1:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)[a(b+c)+b(c+a)+c(a+b)]\geq (a+b+c)^2\)
\(\Rightarrow \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq \frac{(a+b+c)^2}{2(ab+bc+ac)}\)$(*)$
Áp dụng BĐT AM-GM dễ thấy: $a^2+b^2+c^2\geq ab+bc+ac$
$\Rightarrow (a+b+c)^2\geq 3(ab+bc+ac)\Rightarrow ab+bc+ac\leq \frac{(a+b+c)^2}{3}(**)$
Từ $(*); (**)\Rightarrow \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq \frac{(a+b+c)^2}{2.\frac{(a+b+c)^2}{3}}=\frac{3}{2}$ (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Bài 2:
Áp dụng BĐT AM-GM:
\(\frac{a^3}{b(2c+a)}+\frac{b}{3}+\frac{2c+a}{9}\geq 3\sqrt[3]{\frac{a^3}{b(2c+a)}.\frac{b}{3}.\frac{2c+a}{9}}=a\)
\(\frac{b^3}{c(2a+b)}+\frac{c}{3}+\frac{2a+b}{9}\geq b\)
\(\frac{c^3}{a(2b+c)}+\frac{a}{3}+\frac{2b+c}{9}\ge c\)
Cộng theo vế và thu gọn ta có:
\(\frac{a^3}{b(2c+a)}+\frac{b^3}{c(2a+b)}+\frac{c^3}{a(2b+c)}\geq \frac{a+b+c}{3}=\frac{3}{3}=1\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$
Áp dụng cosi ta có \(a.a.a.b.b\le\frac{3a^5+2b^5}{5};b.b.b.a.a\le\frac{3b^5+2a^5}{5}\)
=> \(a^5+b^5\ge a^2b^2\left(a+b\right)\)
Khi đó
\(VT\le\frac{1}{ab\sqrt{a+b}}+\frac{1}{bc\sqrt{b+c}}+\frac{1}{ac\sqrt{a+c}}\)
Áp dụng BĐT buniacoxki ta có :
\((\frac{1}{ab\sqrt{a+b}}+\frac{1}{bc\sqrt{b+c}}+\frac{1}{ac\sqrt{a+c}})^2\le\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\left(\frac{1}{b^2\left(a+b\right)}+\frac{1}{c^2\left(b+c\right)}+...\right)\)
Mà 1/a^2+1/b^2+1/c^2=1(giả thiết)
=> \(VT\le VP\)(ĐPCM)
Dấu bằng xảy ra khi a=b=c=can(3)
\(P=\frac{a^2}{2ab+3ac}+\frac{b^2}{2bc+3ab}+\frac{c^2}{2ac+3bc}\)
\(P\ge\frac{\left(a+b+c\right)^2}{5\left(ab+bc+ca\right)}\ge\frac{3\left(ab+bc+ca\right)}{5\left(ab+bc+ca\right)}=\frac{3}{5}\)
Dấu "=" xảy ra khi \(a=b=c\)