Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

E D C B H K x M N A
a) Xét \(\Delta BEA\) và \(\Delta DCA\) có:
AE = AC (gt)
\(\widehat{BAE}=\widehat{DAC}\) (đối đỉnh)
AB = AD (gt)
\(\Rightarrow\Delta BEA=\Delta DCA\) (c.g.c)
\(\Rightarrow BE=CD\) (2 cạnh t/ư)
b) Ta có: \(BM=\frac{1}{2}BE\) (M là tđ)
\(DN=\frac{1}{2}CD\) (N là tđ)
mà BE = CD \(\Rightarrow BM=DN\)
Vì \(\Delta BEA=\Delta DCA\) (câu a)
\(\Rightarrow\widehat{EBA}=\widehat{CDA}\) (so le trong)
hay \(\widehat{MBA}=\widehat{NDA}\)
Xét \(\Delta ABM\) và \(\Delta ADN\) có:
AB = AD (gt)
\(\widehat{MBA}=\widehat{NDA}\) (c/m trên)
BM = DN (c/m trên)
\(\Rightarrow\Delta ABM=\Delta ADN\left(c.g.c\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{DAN}\) (2 góc t/ư)
mà \(\widehat{DAN}+\widehat{NAB}=180^o\) (kề bù)
\(\Rightarrow\widehat{BAM}+\widehat{NAB}=180^o\)
\(\Rightarrow M,A,N\) thẳng hàng.

Chu vi tam giác ABC=54cm
Hôm nay mk giải toán cũng có câu nay.dễ ẹt
a) Do K là trung điểm của BC (gt)
\(\Rightarrow BK=CK\)
Xét \(\Delta AKB\) và \(\Delta DKC\) có:
\(AK=DK\left(gt\right)\)
\(\widehat{AKB}=\widehat{DKC}\) (đối đỉnh)
\(BK=CK\left(cmt\right)\)
\(\Rightarrow\Delta AKB=\Delta DKC\left(c-g-c\right)\)
\(\Rightarrow\widehat{ABK}=\widehat{DCK}\) (hai góc tương ứng)
Mà \(\widehat{ABK}\) và \(\widehat{DCK}\) là hai góc so le trong
\(\Rightarrow AB\) // \(CD\)
b) Do \(\Delta ABC\) vuông tại A (gt)
\(\Rightarrow AB\perp AC\)
Mà \(AB\) // \(CD\) (cmt)
\(\Rightarrow CD\perp AC\)
Do \(\Delta AKB=\Delta DKC\left(cmt\right)\)
\(\Rightarrow AB=CD\) (hai cạnh tương ứng)
Do H là trung điểm của AC (gt)
\(\Rightarrow AH=CH\)
Xét hai tam giác vuông: \(\Delta ABH\) và \(\Delta CDH\) có:
\(AB=CD\left(cmt\right)\)
\(AH=CH\left(cmt\right)\)
\(\Rightarrow\Delta ABH=\Delta CDH\) (hai cạnh góc vuông)
c) Sửa đề: Chứng minh \(\Delta HBD\) cân
Do \(\Delta ABH=\Delta CDH\left(cmt\right)\)
\(\Rightarrow HB=HD\) (hai cạnh tương ứng)
\(\Rightarrow\Delta HBD\) cân tại H