Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có góc A+góc B+góc C=180 độ
=>góc A=180 độ-30 độ-20 độ=130 độ
Xét ΔABC có BC/sinA=AC/sinB=AB/sinC
=>AC/sin30=AB/sin20=30/sin130
=>\(AC\simeq19,58\left(cm\right);AB\simeq13,39\left(cm\right)\)
ΔAHB vuông tại H có sin B=AH/AB
=>AH/13,39=1/2
=>AH=6,695(cm)
b: Xét ΔABC có AD là phân giác
nên AB/AC=BD/DC
=>\(\dfrac{BD}{DC}=\dfrac{13.39}{19.58}\)
=>\(\dfrac{BD}{13.39}=\dfrac{CD}{19.58}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{13.39}=\dfrac{CD}{19.58}=\dfrac{BD+CD}{13.39+19.58}=\dfrac{30}{32.97}=\dfrac{1000}{1099}\)
=>\(BD\simeq12,18\left(cm\right);CD\simeq17,82\left(cm\right)\)
a)Ta có: 62+82=102
⇒ AB2+AC2=BC2
⇒ ΔABC vuông tại A (Py-ta-go đảo)
b)Ta có:\(AB^2=BD.BC\Leftrightarrow BD=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6cm\) (hệ thức lượng)
Ta có: \(AC^2=CD.BC\Leftrightarrow CD=\dfrac{AC^2}{BC}=\dfrac{8^2}{10}=6,4cm\) (HTL)
Ta có: \(AD.BC=AB.AC\Leftrightarrow AD=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8cm\) (HTL)
c)Vì P là hình chiếu của D trên AB
⇒DP⊥AB \(\Rightarrow\widehat{APD}=90^o\)
Xét ΔAPD và ΔADB có:
\(\widehat{A}:chung\)
\(\widehat{APD}=\widehat{ADB}=90^o\)
⇒ ΔAPD ∼ ΔADB (g-g)
\(\Rightarrow\dfrac{AP}{AD}=\dfrac{AD}{AB}\Rightarrow AP.AB=AD^2\) (1)
Chứng minh tương tự,ta có: ΔADQ ∼ ΔACD (g-g)
\(\Rightarrow\dfrac{AD}{AC}=\dfrac{AQ}{AD}\Rightarrow AC.AQ=AD^2\) (2)
Ta có: AD2 = BD.CD (HTL) (3)
Từ (1)(2)(3)⇒AP.AB=AC.AQ=BD.CD=AD2
d)Xét tg APDQ có: \(\widehat{DPA}=\widehat{PAQ}=\widehat{AQD}=90^o\)
⇒ APDQ là hình chữ nhật
⇒ AD=PQ và \(\widehat{PDQ}=90^o\)
Ta có: AP.BP=DP2 (HTL trong ΔADB)
AQ.CQ=DQ2 (HTL trong ΔADC)
⇒ AP.BP+AQ.CQ=DP2+DQ2=PQ2 (Py-ta-go trong ΔPDQ vuông tại D)
Mà PQ=AD ⇒ AP.BP+AQ.CQ=AD2
e) Ta có: PQ=AD (cmt)
Mà AD = 4,8 cm
⇒ PQ = 4,8 cm
a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=5^2-3^2=16\)
hay AC=4
Xét ΔBAC vuông tại A có
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{4}{5}\)
nên \(\widehat{B}\simeq53^0\)
\(\Leftrightarrow\widehat{C}=37^0\)
b: Xét ΔABC có
BD là đường phân giác ứng với cạnh AC
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)
hay \(\dfrac{AD}{3}=\dfrac{CD}{5}\)
mà AD+CD=4
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{1}{2}\)
Do đó: AD=1,5cm; CD=2,5cm
3:
Đặt HB=x; HC=y
Theo đề, ta có: x+y=289 và xy=120^2=14400
=>x,y là các nghiệm của phương trình:
a^2-289a+14400=0
=>a=225 hoặc a=64
=>(x,y)=(225;64) và (x,y)=(64;225)
TH1: BH=225cm; CH=64cm
=>\(AB=\sqrt{225\cdot289}=15\cdot17=255\left(cm\right)\) và \(AC=\sqrt{64\cdot289}=7\cdot17=119\left(cm\right)\)
TH2: BH=64cm; CH=225cm
=>AB=119m; AC=255cm
1: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=10(cm)
Xét ΔABC có AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
hay \(\dfrac{BD}{6}=\dfrac{CD}{8}\)
mà BD+CD=10cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{6}=\dfrac{CD}{8}=\dfrac{BD+CD}{6+8}=\dfrac{10}{14}=\dfrac{5}{7}\)
Do đó: \(BD=\dfrac{30}{7}cm;CD=\dfrac{40}{7}cm\)