K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2020

a) 

Ta có: \(\hept{\begin{cases}\widehat{DAC}=\widehat{DAB}+\widehat{BAC}=60^o+\widehat{BAC}\\\widehat{BAE}=\widehat{CAE}+\widehat{BAC}=60^o+\widehat{BAC}\end{cases}\Rightarrow\widehat{DAC}=\widehat{BAE}}\)

b) Xét \(\Delta\)DAC và \(\Delta\)BAE có:

\(\hept{\begin{cases}AD=AB\\\widehat{DAC}=\widehat{BAE}\\AC=AE\end{cases}\Rightarrow\Delta DAC=\Delta BAE\left(cgc\right)}\)

=> DC=BE (2 cạnh tương ứng)

c) Theo câu (b) ta có: \(\Delta DAC=\Delta BAE\)

\(\Rightarrow\widehat{ADC}=\widehat{ABE}\)hay \(\widehat{IDA}=\widehat{IBK}\left(1\right)\)

Gọi I là giao của DC và AB

Xét \(\Delta IBK:\widehat{IBK}+\widehat{IKB}+\widehat{BIK}=180^o\left(2\right)\)

Xét \(\Delta AID:\widehat{AID}+\widehat{DAI}+\widehat{ADI}=180^o\left(3\right)\)

Mà \(\widehat{BIK}=\widehat{AID}\)(2 góc đối đỉnh)(4)

Từ (1)(2)(3)(4) => \(\widehat{IKB}=\widehat{IAD}=60^o\)hay \(\widehat{DKB}=60^o\)

Ta có: \(\widehat{EKC}=\widehat{DKB}=60^o;\widehat{DKE}=\widehat{BKC}\)(2 góc đối đỉnh)

\(\Rightarrow\widehat{DKB}+\widehat{DKE}+\widehat{EKC}+\widehat{BKC}=360^o\)

\(\Rightarrow2\widehat{DKB}+2\widehat{BKC}=360^o\)

\(\Rightarrow2\cdot60^o+2\cdot\widehat{BKC}=360^o\)

\(\Rightarrow\widehat{BKC}=120^o\)

28 tháng 6 2016

D A B C E

a) Xét 2 tam giác DAC và BAE, có:

    DA = BA (gt)                             (1)

    AC = AE (gt)                             (2)

Lại có: ^DAB = ^CAE = \(90^0\) (do AD vuông góc với AB, AE vuông góc với AC)

=>  ^DAB + ^BAC = ^CAE + ^BAC

hay ^DAC = ^BAE                          (3)

Từ (1), (2) và (3), ta suy ra: \(\Delta\)DAC = \(\Delta\)BAE (c.g.c)

=>  DC = BE (2 cạnh tương ứng)

b) Gọi giao điểm của BE và DC là O, giao điểm của AB và DC là I

Ta có: ^DIA = ^BIO (đối đỉnh)

          ^ADC = ^ABE (2 góc tương ứng do tg DAC = tg BAE)

Mà ^DIA + ^ADC = \(90^0\) (tam giác DAI vuông tại A)

 =>  ^BIO + ^ABE = \(90^0\)

=>  ^BOI = \(90^0\) 

=>  DC vuông góc với BE