Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì a,b,c tỉ lệ với 5,4,3 do đó a/5=b/4=c/3
đặt a/5=b/4=c/3=Kta có a=5K ; b=4K ;c=3K(1)
thay (1) vào P ta có:P=5K+8K-9K/5K-8K+9K
P=(5+8-9).K/(5-8+9).K
P=4/6=2/3
vậy P=2/3.CHÚC BẠN HỌC TỐT
Ta có:
\(\frac{2a}{3}=\frac{3b}{4}\Rightarrow\frac{2a}{3}:6=\frac{3b}{4}:6\)
\(\Rightarrow\frac{a}{9}=\frac{b}{8}\Rightarrow\frac{a}{27}=\frac{b}{24}\) ( 1 )
\(\frac{1}{4}\left(2b\right)=\frac{1}{5}\left(-3c\right)\Rightarrow\frac{b}{2}=\frac{-3c}{5}\Rightarrow\frac{b}{2}:3=-\frac{3c}{5}:3\)
\(\Rightarrow\frac{b}{6}=\frac{c}{-5}\Rightarrow\frac{b}{24}=\frac{c}{-20}\) (2 )
Từ (1) và ( 2) có:
\(\frac{a}{27}=\frac{b}{24}=\frac{c}{-20}\)
\(\Rightarrow\frac{a}{27}=\frac{2b}{48}=\frac{3c}{-60}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{27}=\frac{2b}{48}=\frac{3c}{-60}=\frac{a-2b+3c}{27-48+\left(-60\right)}=\frac{1}{-81}\)
\(\Rightarrow\frac{a}{27}=\frac{b}{24}=\frac{c}{-20}=-\frac{1}{81}\)
\(\Rightarrow a-b-c=-\frac{1}{81}\left[27-24-\left(-20\right)\right]=-\frac{1}{81}.23=-\frac{23}{81}\)
a) Theo đề, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) và a + b + c =1,5
Theo t/c của dãy tỉ số bằng nhau:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{1,5}{10}=\frac{3}{20}\)
=>a=0,3
b=0,45
c=0,75
a) Vì a,b,c tỉ lệ với 2,3,5
=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)
Áp dụng t/c dãy tỉ số bằng nhau :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{1,5}{10}=\frac{3}{20}\)
\(\frac{a}{2}=\frac{3}{20}=>a=\frac{3}{20}.2=\frac{3}{10}\)
\(\frac{b}{3}=\frac{3}{20}=>b=\frac{3}{20}.3=\frac{9}{20}\)
\(\frac{c}{5}=\frac{3}{20}=>c=\frac{3}{20}.5=\frac{3}{4}\)
b)
Áp dụng t/c dãy tỉ số bằng nhau :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)
\(\frac{a}{2}=5=>a=5.2=10\)
\(\frac{b}{3}=5=>b=5.3=15\)
\(\frac{c}{4}=5=>c=5.4=20\)
c) \(\frac{a}{2}=\frac{b}{3},\frac{b}{5}=\frac{c}{4}\)
\(\frac{a}{10}=\frac{b}{15},\frac{b}{15}=\frac{c}{12}\)
\(=>\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng t/c dãy tỉ số bằng nhau
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a+b-c}{10+15-12}=\frac{-39}{13}=-3\)
\(\frac{a}{10}=-3=>-3.10=-30\)
\(\frac{b}{15}=-3=>-3.15=-45\)
\(\frac{c}{12}=-3=>-3.12=-36\)
Ta có :
\(\frac{a}{b}=\frac{5}{6}\Rightarrow\frac{a}{b}=\frac{20}{24}\Rightarrow\frac{a}{20}=\frac{b}{24}\)\(\left(1\right)\)
\(\frac{b}{c}=\frac{8}{9}\Rightarrow\frac{b}{c}=\frac{24}{27}\Rightarrow\frac{b}{24}=\frac{c}{27}\)\(\left(2\right)\)
\(\frac{c}{d}=\frac{3}{2}\Rightarrow\frac{c}{d}=\frac{27}{18}\Rightarrow\frac{c}{27}=\frac{d}{18}\)\(\left(3\right)\)
Từ ( 1 ) ; ( 2 ) ; ( 3 ) \(\Rightarrow\frac{a}{20}=\frac{b}{24}=\frac{c}{27}=\frac{d}{18}=\frac{d-c}{18-24}=\frac{54}{-6}=-9\)
\(\frac{a}{20}=-9\Rightarrow a=-9.20=-180\)
\(\frac{b}{24}=-9\Rightarrow b=-9.24=-216\)
\(\frac{c}{27}=-9\Rightarrow c=-9.27=-243\)
\(\frac{d}{18}=-9\Rightarrow d=-9.18=-162\)
\(\Rightarrow A=a+2b+3c+4d=-180+\left(-216\right).2+\left(-243\right).3+\left(-162\right).4\)
\(=-1989\)
đặt a/b =c/d =k
=> a=bm , c=dm
=> 2a+3c/2b+3d =2bm+3bm/ 2b +3d = m.(2d+3d)/2d+3d =m (1)
=> 2a-3c/2d-3d=2bm-3dm /2b -3d =m.(2b-3d)/2b-3d= m (2)
Từ (1) và (2) => 2a+3c/2b+3d =2a-3c/2b-3d
câu 2 tương tự nha
Đặt:
\(\dfrac{a}{10}=\dfrac{b}{8}=\dfrac{c}{6}=t\Leftrightarrow\left\{{}\begin{matrix}a=10t\\b=8t\\c=6t\end{matrix}\right.\)
\(M=\dfrac{a+2b-3c}{a-2b+3c}=\dfrac{10t+16t-18t}{10t-16t+18t}=\dfrac{8t}{12t}=\dfrac{8}{12}=\dfrac{2}{3}\)
sai đề r, a/3 là s, phải a/b chứ, nếu là a/b thì lm ntnày:
Lấy a/b=c/d=k(k thuộc N*)
=>a=bk ; c=dk
Xét : + 2a-3c/2b-3d=2bk-3dk/2b-3d= k^2.(2b-3d)/2b-3d=k^2 (1)
+ 2a+3c/2b+3d=2bk+3dk/2b+3d= k^2.(2b+3d)/2b+3d=k^2 (2)
(1);(2)=> 2a-3c/2b-3d=2a+3c/2b+3d(đpcm)
Vậy 2a-3c/2b-3d=2a+3c/2b+3d
Ta có: a, b, c tỉ lệ với 2, 3, 5
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{5}.\)
Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\Rightarrow\left\{{}\begin{matrix}a=2k\\b=3k\\c=5k\end{matrix}\right.\)
Có: \(A=\frac{a+2b-c}{a-2b+3c}.\)
\(\Rightarrow A=\frac{2k+2.3k-5k}{2k-2.3k+3.5k}\)
\(\Rightarrow A=\frac{2k+6k-5k}{2k-6k+15k}\)
\(\Rightarrow A=\frac{\left(2+6-5\right).k}{\left(2-6+15\right).k}\)
\(\Rightarrow A=\frac{3k}{11k}\)
\(\Rightarrow A=\frac{3}{11}.\)
Vậy \(A=\frac{3}{11}.\)
Chúc bạn học tốt!