\(3+\frac{a}{2b}+\frac{2b}{3c}+\frac{3c}{a}>=a+2b+3c+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2016

Đề đúng \(3+\frac{a}{2b}+\frac{2b}{3c}+\frac{3c}{a}\ge a+2b+3c+\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}\) 

Ta thấy: 

\(a\cdot2b\cdot3c=1\) nên ta đặt \(a=\frac{y}{x};2b=\frac{z}{y};3c=\frac{x}{z}\)

Khi đó \(VT\ge VP\Leftrightarrow\frac{3xyz+x^3+y^3+z^3}{xyz}\)

\(\ge\frac{x^2y+y^2x+y^2z+z^2y+x^2z+z^2x}{xyz}\)

\(\Leftrightarrow3xyz+x^3+y^3+z^3-x^2y-y^2x-y^2z-z^2y-z^2x-x^2z\ge0\)

\(\Leftrightarrow x\left(x-y\right)\left(x-z\right)+y\left(y-z\right)\left(y-x\right)+z\left(z-x\right)\left(z-y\right)\ge0\)

Đúng theo Bđt Schur

Vậy Bđt đc chứng minh

14 tháng 3 2019

Web có hơn 600 nghìn câu hỏi mà toàn thấy câu hỏi giống nhau với câu thấy nhiều đến chảy hết nước mắt rồi

3 tháng 4 2020

\(M=\left(a-\frac{6}{a+1}\right)+\left(2b-\frac{3}{b+1}\right)+\left(3c-\frac{2}{c+1}\right)\)

\(M=\left(a+2b+3c\right)-6\left(\frac{1}{a+1}+\frac{1}{2b+2}+\frac{1}{3c+3}\right)\)

\(M\le6-\frac{6.\left(1+1+1\right)^2}{a+1+2b+2+3c+3}\)

\(M\le6-\frac{6.9}{6+6}=6-\frac{9}{2}=\frac{3}{2}\)

Đẳng thức xảy ra khi \(a=3;b=1;c=\frac{1}{3}\)

21 tháng 9 2017

\(BDT\Leftrightarrow\frac{6a+2b+3c+17}{1+6a}+\frac{6a+2b+3c+17}{1+2b}+\frac{6a+2b+3c+17}{1+3c}\ge18\)

\(\Leftrightarrow\left(6a+2b+3c+17\right)\left(\frac{1}{1+6a}+\frac{1}{1+2b}+\frac{1}{1+3c}\right)\ge18\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(\frac{1}{1+6a}+\frac{1}{1+2b}+\frac{1}{1+3c}\ge\frac{9}{6a+2b+3c+3}\)

\(\Rightarrow VT=\left(6a+2b+3c+17\right)\left(\frac{1}{1+6a}+\frac{1}{1+2b}+\frac{1}{1+3c}\right)\)

\(\ge\left(6a+2b+3c+17\right)\cdot\frac{9}{6a+2b+3c+3}\)

\(=\left(11+17\right)\cdot\frac{9}{11+3}=18=VP\)