Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho a,b,c thuộc R >1 tm a+b+c=6
cmr \(\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)\le216\)
Lời giải khác:
Áp dụng BĐT AM-GM:
$a^2+(b+c)^2=a^2+\frac{(b+c)^2}{4}+\frac{3(b+c)^2}{4}$
$\geq a(b+c)+\frac{3}{4}(b+c)^2$
$\Rightarrow \frac{a(b+c)}{a^2+(b+c)^2}\leq \frac{4a}{4a+3b+3c}$
Áp dụng BĐT Cauchy_Schwarz:
$\frac{4a}{4a+3b+3c}=\frac{4a}{a+\frac{a+b+c}{3}+...+\frac{a+b+c}{3}}\leq \frac{1}{100}.4a\left(\frac{1}{a}+\frac{3}{a+b+c}+...+\frac{3}{a+b+c}\right)$
$=\frac{1}{25}+\frac{27a}{25(a+b+c)}$
Tương tự với những phân thức còn lại và cộng theo vế:
$\Rightarrow \text{VT}\leq \frac{3}{25}+\frac{27}{25}=\frac{6}{5}$ (đpcm)
Dấu "=" xảy ra khi $a=b=c$
BĐT Mincopxki
Ta cần CM: \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+b\right)^2+\left(c+d\right)^2}\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge a^2+b^2+c^2+d^2+2\left(ab+cd\right)\)
\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ab+cd\)
\(\Leftrightarrow a^2b^2+c^2d^2+b^2c^2+a^2d^2\ge a^2b^2+c^2d^2+2abcd\)
\(\Leftrightarrow\left(bc-ad\right)^2\ge0\)(đúng)
1.
Nhân 2 vế của BĐT với \(\left(a+b+c\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(3(a^2+b^2+c^2)(a+b)(b+c)(c+a)\ge(a+b+c)\left(Σ_{cyc}(a^2+b^2)(c+a)(c+b)\right)\)
\(\LeftrightarrowΣ_{perms}a^2b\left(a-b\right)^2\ge0\) *đúng*
Bđt Bu-nhia-cop-xki \(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\), đẳng thức xảy ra khi \(ay=bx\)
a.
\(\left(2x+3y\right)^2=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\le\left(2+3\right)\left(2x^2+3y^2\right)=5^2\)
\(\Rightarrow-5\le2x+3y\le5\)
b.
\(\sqrt{a+c}.\sqrt{b+c}+\sqrt{a-c}.\sqrt{b-c}\le\sqrt{a+c+a-c}.\sqrt{b+c+b-c}\)
\(=\sqrt{2a}.\sqrt{2b}=2\sqrt{ab}\)
Dấu bằng xảy ra khi \(\frac{\sqrt{a+c}}{\sqrt{a-c}}=\frac{\sqrt{b+c}}{\sqrt{b-c}}\), hay \(a=b\)
Thử lại với a = b thì \(VT=2a=2\sqrt{ab}=VP>\sqrt{ab}\) nên đề đã ra sai vế phải của bđt.
c.
bđt \(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)
d.
bđt \(\Leftrightarrow\left(a+c\right)^2+\left(b+d\right)^2\le a^2+b^2+c^2+d^2+2\sqrt{a^2+b^2}\sqrt{c^2+d^2}\)
\(\Leftrightarrow ac+bd\le\sqrt{a^2+b^2}.\sqrt{c^2+d^2}\)
bđt trên luôn đúng vì theo bđt Bu-nhia-cop-xki, ta có:
\(\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge\sqrt{\left(ac+bd\right)^2}=\left|ac+bd\right|\ge ac+bd\)
Không mất tính tổng quát giả sử
\(1< a\le b\le c\)
Ta có:
\(\left(b^2+2\right)\left(c^2+2\right)-\left[\frac{\left(b+c\right)^2}{4}+2\right]^2\)
\(=\frac{-\left(b-c\right)^2}{16}\left(b^2+c^2+6bc-16\right)\le0\)
\(\Rightarrow\left(b^2+2\right)\left(c^2+2\right)\le\left[\frac{\left(b+c\right)^2}{4}+2\right]^2\)
Đặt \(c+b=2x\)
\(\Rightarrow VT\le\left(a^2+2\right)\left[\frac{\left(b+c\right)^2}{4}+2\right]^2\)
\(=\left[\left(6-2x\right)^2+2\right]\left(x^2+2\right)^2\)
Ta cần chứng minh
\(\left[\left(6-2x\right)^2+2\right]\left(x^2+2\right)^2-216\le0\)
\(\Leftrightarrow2\left(x-2\right)^2\left(2x^4-4x^3+3x^2-20x-8\right)\le0\)
(cái cuối cùng e tự chứng minh nha)