Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}-\frac{b^2}{b+a}-\frac{c^2}{b+c}-\frac{a^2}{c+a}\)
\(=\left(\frac{a^2}{a+b}-\frac{b^2}{b+a}\right)+\left(\frac{b^2}{b+c}-\frac{c^2}{b+c}\right)+\left(\frac{c^2}{c+a}-\frac{a^2}{c+a}\right)\)
\(=a-b+b-c+c-a=0\)
Từ đây ta suy ra được
\(\hept{\begin{cases}\frac{c^2}{a+b}+\frac{a^2}{b+c}+\frac{b^2}{c+a}\le\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\\\frac{c^2}{a+b}+\frac{a^2}{b+c}+\frac{b^2}{c+a}\ge\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\end{cases}}\)
Dấu = xảy ra khi \(|a|=|b|=|c|\)
Đặt M; N; P như sau:
\(M=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge N=\frac{c^2}{a+b}+\frac{a^2}{b+c}+\frac{b^2}{c+a}\ge P=\frac{b^2}{a+b}+\frac{c^2}{b+c}+\frac{a^2}{c+a}.\)
1./ Xét hiệu: M - P
\(M-P=\frac{a^2-b^2}{a+b}+\frac{b^2-c^2}{b+c}+\frac{c^2-a^2}{c+a}=a-b+b-c+c-a=0\)
=> M = P
2./ Bất đẳng thức \(M\ge N\ge P\)có \(M=P\)=> \(M=N=P\)
3./ Khi M = N, ta có hiệu: M - N = 0 nên:
\(\frac{a^2-c^2}{a+b}+\frac{b^2-a^2}{b+c}+\frac{c^2-b^2}{c+a}=0\)
\(\Leftrightarrow\frac{\left(a^2-c^2\right)\left(b+c\right)\left(c+a\right)+\left(b^2-a^2\right)\left(a+b\right)\left(a+c\right)+\left(c^2-b^2\right)\left(a+b\right)\left(c+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)
\(\Leftrightarrow a^4+b^4+c^4=a^2b^2+b^2c^2+c^2a^2\)(1)
Mặt khác ta luon có bất đẳng thức: \(\Leftrightarrow a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)dấu "=" khi a2 = b2 = c2
Do đó để xảy ra đẳng thức (1) thì a2 = b2 = c2 hay |a| = |b| = |c|. ĐPCM
Làm thì mình nghĩ mình làm dc nhưng có cái giờ phải đi học rồi . Nếu tối nay chưa ai trả lời mình sẽ trả lời
Áp dụng BĐT Cosi ta có \(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{4ab}\ge2\sqrt{\frac{ab}{a^2+b^2}.\frac{a^2+b^2}{4ab}}=1\)
Tương tự \(\frac{bc}{b^2+c^2}+\frac{b^2+c^2}{4bc}\ge1\) \(\frac{ca}{c^2+a^2}+\frac{c^2+a^2}{4ca}\ge1\)
Khi đó BĐT sẽ được chứng minh nếu ta chỉ ra được
\(\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\left(\frac{a^2+b^2}{4ab}+\frac{b^2+c^2}{4bc}+\frac{c^2+a^2}{4ca}\right)\ge\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\left(\frac{a}{4b}+\frac{b}{4a}+\frac{b}{4c}+\frac{c}{4b}+\frac{a}{4c}+\frac{c}{4a}\right)\right)\ge\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{4}\left(\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}-\frac{a+c}{b}-\frac{b+c}{a}-\frac{c+a}{b}\right)\ge\frac{3}{4}\)(do \(a+b+c=1\))
\(\Leftrightarrow\frac{3}{4}\ge\frac{3}{4}\) luôn đúng. Từ đó suy ba BĐT được chứng minh. Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
\(\frac{a}{b^2+1}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}\ge a-\frac{ab}{2}\) (AM-GM)
chung minh tuong tu ta co
\(VT\ge a+b+c-\frac{ab}{2}-\frac{bc}{2}-\frac{ac}{2}\ge3-\frac{\left(a+b+c\right)^2}{6}\ge3-\frac{3}{2}=\frac{3}{2}\)
dau = xay ra khi a=b=c=1
Áp dụng bđt Cosi ta có: \(\frac{a^2}{a+b}+\frac{a+b}{4}\ge2;\frac{b^2}{b+c}+\frac{b+c}{4}\ge2;\frac{c^2}{c+d}+\frac{c+d}{4}\ge2\)\(;\frac{d^2}{d+a}+\frac{d+a}{4}\ge2\)
Cộng theo vế và a+b+c+d=1 ta có đpcm
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{a^2}{a+b}=\frac{a+b}{4};\frac{b^2}{b+c}=\frac{b+c}{4};\frac{c^2}{c+d}=\frac{c+d}{4};\frac{d^2}{d+a}=\frac{d+a}{4}\\\\a=b=c=1\end{cases}}\)
\(\Leftrightarrow a=b=c=d=\frac{1}{4}\)