K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2019

TA có \(\frac{2}{b}=\frac{1}{a}+\frac{1}{b}\)

=>\(\frac{2}{b}-\frac{1}{b}=\frac{1}{a}\)

=>\(\frac{1}{b}=\frac{1}{a}\)

=>\(a=b\)thay vào P:

\(P=\frac{a+b}{2a-b}+\frac{c+d}{2c-b}\)

=>\(P=\frac{2a}{a}+\frac{2c}{c}\)

=>\(P=4\)

Cậu ch0 mik xl nhen! Mik k0 bít làm! Xl rất nhìu

mẫu phải là mũ 2 chứ,sao lại mũ 3 zậy bn

12 tháng 7 2017

mũ 2 và mũ 3 nha bạn. cả 2 cái cách làm tương tự nhau.nếu bạn ko làm đc mũ 3, bn có thể làm mũ 2 chi mình xem đc ko

9 tháng 8 2021

Ta có: \(2a+b^2=2a\left(a+b+c\right)+b^2=b^2+2a^2+2ab+2ac\)

\(\ge4ab+2ac+a^2\)

\(\Rightarrow\frac{a}{2a+b^2}\le\frac{a}{4ab+2ac+a^2}=\frac{1}{4b+2c+a}\)

\(\le\frac{1}{49}.\frac{49}{4b+2c+a}=\frac{1}{49}.\frac{\left(4+2+1\right)^2}{4b+2c+a}\)

\(\le\frac{1}{49}\left(\frac{16}{4b}+\frac{4}{2c}+\frac{1}{a}\right)=\frac{1}{49}\left(\frac{4}{b}+\frac{2}{c}+\frac{1}{a}\right)\)

CMTT: \(\frac{b}{2b+c^2}\le\frac{1}{49}\left(\frac{4}{c}+\frac{2}{a}+\frac{1}{b}\right);\frac{c}{2c+a^2}\le\frac{1}{49}\left(\frac{4}{a}+\frac{2}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{a}{2a+b^2}+\frac{b}{2b+c^2}+\frac{c}{2c+a^2}\le\frac{1}{7}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)( đpcm )

18 tháng 8 2016

\(3\left(2a^2+b^2\right)=\left(1^2+1^2+1^2\right)\left(a^2+a^2+b^2\right)\ge\left(a+a+b\right)^2=\left(2a+b\right)^2\)

\(P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)

\(\frac{1}{2a+b}=\frac{1}{a+a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)=\frac{1}{9}\left(\frac{2}{a}+\frac{1}{b}\right)\)

\(P\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\)

\(gt\rightarrow7\left(x^2+y^2+z^2\right)=6\left(xy+yz+zx\right)+2015\)

\(\Leftrightarrow7\left(x+y+z\right)^2=20\left(xy+yz+zx\right)+2015\)

Ta có: \(3\left(xy+yz+zx\right)\le\left(x+y+z\right)^2\)

\(\Rightarrow7\left(x+y+z\right)^2\le\frac{20}{3}\left(x+y+z\right)^2+2015\)

\(\Leftrightarrow\frac{1}{3}\left(x+y+z\right)^2\le2015\)

\(\Leftrightarrow x+y+z\le\sqrt{6045}\)

\(P\le\frac{1}{3}\left(x+y+z\right)\le\frac{\sqrt{6045}}{3}\)

Dấu bằng xảy ra khi \(x=y=z=\frac{\sqrt{6045}}{3}\)hay \(a=b=c=\left(\frac{\sqrt{6045}}{3}\right)^{-1}\)

29 tháng 9 2016

Ta có:(Sử dụng bdt cô-si) \(\frac{bc}{a^2b+a^2c}+\frac{b+c}{4bc}\ge2\sqrt{\frac{bc}{a^2\left(b+c\right)}.\frac{b+c}{4bc}}=2.\frac{1}{2a}=\frac{1}{a}\)

=> \(\frac{bc}{a^2b+a^2c}\ge\frac{1}{a}-\frac{b+c}{4bc}\)

Chứng minh tương tự:\(\frac{ca}{b^2a+b^2c}\ge\frac{1}{b}-\frac{c+a}{4ca}\);\(\frac{ab}{c^2a+c^2b}\ge\frac{1}{c}-\frac{a+b}{4ab}\)

Từ đó \(P\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\left(\frac{b+c}{4bc}+\frac{c+a}{4ca}+\frac{a+b}{4ab}\right)\)

\(\frac{b+c}{4bc}+\frac{c+a}{4ca}+\frac{a+b}{4ab}=\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)=> \(P\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Ta có:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\ge9\)(do a+b+c<=1)=> \(P\ge\frac{1}{2}.9=\frac{9}{2}\)

Dấu '=' xảy ra <=> \(\hept{\begin{cases}a+b+c=1\\\frac{bc}{a^2b+a^2c}=\frac{b+c}{4bc}\\a,b,c>0\end{cases}};...\)

<=> \(a=b=c=\frac{1}{3}\)

Vậy\(MinP=\frac{9}{2}\)khi a=b=c=1/3

1 tháng 3 2020

\(\frac{2}{b}=\frac{1}{a}+\frac{1}{c}\Rightarrow b=\frac{2ac}{a+c}\)

ta có: \(P=\frac{a+\frac{2ac}{a+c}}{2a-\frac{2ac}{a+c}}+\frac{c+\frac{2ac}{a+c}}{2c-\frac{2ac}{a+c}}=\frac{\frac{a^2+3ac}{a+c}}{\frac{2a^2}{a+c}}+\frac{\frac{c^2+3ac}{a+c}}{\frac{2c^2}{a+c}}\)

\(=\frac{a^2+3ac}{2a^2}+\frac{c^2+3ac}{2c^2}=1+\frac{3}{2}\left(\frac{c}{a}+\frac{a}{c}\right)\ge1+\frac{3}{2}\cdot2\sqrt{\frac{c}{a}\cdot\frac{a}{c}}=4\)

Dấu "=" xảy ra khi a=b=c