\(\dfrac{a}{2002}=\dfrac{b}{2003}=\dfrac{c}{2005}\)

CMR:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2017

giả sử a/2002 = b/2003 = c/2004 = k
=> a = 2002k ; b=2003k và c=2004k
=> 4(a-b)(b-c) = 4(2002k - 2003k)(2003k - 2004k)
=> 2(a-b)(b-c) = 4k^2 (1)
Ta có (c-a)^2 = (2004k - 2002k)^2 = 4k^2 (2)
từ (1) và (2) ta có 2(a-b)(b-c) = (c-a)^2

26 tháng 4 2017

mk ko hiểu chỗ từ dòng số 3 đến dòng số 4 cho lắm .

Giảng cho mk dc ko ?

31 tháng 10 2017

Bài 1:

Áp dụng t.c của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\\ =\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a^3}{b^3}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(dpcm\right)\)

1 tháng 11 2017

Thanks nha!!!

13 tháng 6 2017

Đặt \(\dfrac{a}{2003}=\dfrac{b}{2005}=\dfrac{c}{2007}=k\Rightarrow\left\{{}\begin{matrix}a=2003k\\b=2005k\\c=2007k\end{matrix}\right.\)

Ta có: \(\dfrac{\left(a-c\right)^2}{4}=\dfrac{\left(2003k-2007k\right)^2}{4}=\dfrac{16k^2}{4}=4k^2\) (1)

\(\left(a-b\right)\left(b-c\right)=\left(2003k-2005k\right)\left(2005k-2007k\right)\)

\(=2k2k=4k^2\) (2)

Từ (1), (2) \(\Rightarrow\dfrac{\left(a-c\right)^2}{4}=\left(a-b\right)\left(b-c\right)\left(đpcm\right)\)

Vậy...

12 tháng 1 2018

b)\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)

Ta có:

\(\dfrac{a+b}{c}=\dfrac{b+c}{a}\)\(\dfrac{b+c}{a}=\dfrac{c+a}{b}\)

\(\Rightarrow1+\dfrac{a+b}{c}=1+\dfrac{b+c}{a}\)\(1+\dfrac{b+c}{a}=1 +\dfrac{c+a}{b}\)

\(\Rightarrow\dfrac{c}{c}+\dfrac{a+b}{c}=\dfrac{a}{a}+\dfrac{b+c}{a}\)\(\dfrac{a}{a}+\dfrac{b+c}{a}=\dfrac{b}{b}+\dfrac{c+a}{b}\)

\(\Rightarrow\dfrac{a+b+c}{c}=\dfrac{a+b+c}{a}\)\(\dfrac{a+b+c}{a}=\dfrac{a+b+c}{b}\)

\(\Rightarrow\dfrac{a+b+c}{c}-\dfrac{a+b+c}{a}=0\) \(\Rightarrow\left(a+b+c\right)\cdot\left(\dfrac{1}{c}-\dfrac{1}{a}\right)=0\)

\(\dfrac{a+b+c}{a}-\dfrac{a+b+c}{b}=0\)

\(\Rightarrow\left(a+b+c\right)\cdot\left(\dfrac{1}{a}-\dfrac{1}{b}\right)=0\)

+) Vì a,b,c đôi một khác 0

\(\Rightarrow a+b+c=0\)

\(\rightarrow a+b=\left(-c\right)\)

\(\rightarrow a+c=\left(-b\right)\)

\(\rightarrow b+c=\left(-a\right)\)

+) Ta có:

\(M=\left(1+\dfrac{a}{b}\right)\cdot\left(1+\dfrac{b}{c}\right)\cdot\left(1+\dfrac{c}{a}\right)\)

\(=\left(\dfrac{a+b}{b}\right)\cdot\left(\dfrac{b+c}{a}\right)\cdot\left(\dfrac{c+a}{c}\right)\)

\(=\dfrac{-c}{b}\cdot\dfrac{-a}{c}\cdot\dfrac{-b}{a}\)

\(=\left(-1\right)\)

21 tháng 10 2017

Đặt \(\frac{a}{2013}=\frac{b}{2014}=\frac{c}{2015}=k\Rightarrow\hept{\begin{cases}a=2013k\\b=2014k\\c=2015k\end{cases}}\)

Ta có: 4(a - b)(b - c) = 4(2013k - 2014k)(2014k - 2015k) = 4(-k)(-k) = 4k2 (1)

(c - a)2 = (2015k - 2013k)2 = (2k)2 = 4k2 (2)

Từ (1) và (2) ta có đpcm

7 tháng 11 2017

  

Đặt a2013 =b2014 =c2015 =k⇒{

a=2013k
b=2014k
c=2015k

Ta có: 4(a - b)(b - c) = 4(2013k - 2014k)(2014k - 2015k) = 4(-k)(-k) = 4k2 (1)

(c - a)2 = (2015k - 2013k)2 = (2k)2 = 4k2 (2)

Từ (1) và (2) ta có đpcm

5a

Ta có \(\dfrac{a}{b}=\dfrac{a^2}{b^2}\) ; \(\dfrac{c}{d}=\dfrac{c^2}{d^2}\)

\(\dfrac{a}{b}=\dfrac{c}{d}\)=> \(\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}\)=>\(\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}\)=\(\dfrac{a^2+c^2}{b^2+d^2}\)(T/c cuả dãy tỉ số bằng nhau)

=> ĐPCM

Xin lỗi nha mình nhầm đề. Nhưng bạn chỉ cần thay d bằng c là được.

10 tháng 12 2022

Câu 2

(a+3)(b-4)-(a-3)(b+4)=0

=>ab-4a+3b-12-ab-4a+3b+12=0

=>-8a=-6b

=>a/b=3/4

=>a/3=b/4

16 tháng 10 2017

4.a

\(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\\ \Leftrightarrow\left(3x-y\right).4=3\left(x+y\right)\\ \Rightarrow12x-4y=3x+3y\\ \Rightarrow12x-3x=4y+3y\\ \Rightarrow9x=7y\\ \Rightarrow\dfrac{x}{y}=\dfrac{7}{9}\)

17 tháng 10 2017

Thanks