\(A=\left(a+b\right)^2ab+\left(a+c\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2017

Ta có: \(2ab+c=\dfrac{4ab+1-2a-2b}{2}=\dfrac{\left(2a-1\right)\left(2b-1\right)}{2}\)

Và: \(a+b=\dfrac{1-2c}{2}\)

\(\Rightarrow\left(a+b\right)^2=\dfrac{\left(2c-1\right)^2}{4}\)

Thế vô bài toán ta được

\(P=\dfrac{2ab+c}{\left(a+b\right)^2}.\dfrac{2bc+a}{\left(b+c\right)^2}.\dfrac{2ca+b}{\left(c+a\right)^2}\)

\(=\dfrac{\dfrac{\left(2a-1\right)\left(2b-1\right)}{2}}{\dfrac{\left(2c-1\right)^2}{4}}.\dfrac{\dfrac{\left(2b-1\right)\left(2c-1\right)}{2}}{\dfrac{\left(2a-1\right)^2}{4}}.\dfrac{\dfrac{\left(2c-1\right)\left(2a-1\right)}{2}}{\dfrac{\left(2b-1\right)^2}{4}}\)

\(=\dfrac{4.4.4}{2.2.2}=8\)

20 tháng 3 2020

\(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\)

\(\Rightarrow A=c^2ab+a^2bc+b^2ac=abc\left(a+b+c\right)=0\)

19 tháng 8 2018

Nhân khai triển tử và mẫu của B, thấy ab + bc + ca thì thay bằng 1

9 giờ trước (21:02)

thử thay -1 = -ab-bc-ca đi(uy tín) >=))


10 tháng 3 2020

trả lời

dùng bddt bunhiacopsky là ra kq

ho ktoots

10 tháng 3 2020

cố tử thần ♡๖ۣۜŦεαм♡❤Ɠ长♡ღ

Chị ơi dùng bđt BCS , dấu = xảy ra P =1 như thế có gọi là giá trị của P=1 không nhỉ ?