Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
=> a=b=c
a/
\(a^2+b^2+c^2+29ab+bc+ca=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Rightarrow a=b=c\)
b/ \(a^3+b^3+c^3=\left(a+b\right)^3+c^3-3ab\left(a+b\right)\)
\(=\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3ab\left(a+b\right)\)
\(=-3ab\left(a+b\right)=-3ab\left(-c\right)=3abc\)
c/ Không, vì \(a=b=c\ne\) thì \(a^3+b^3+c^3=3a^3=3abc\) vẫn đúng
1. \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left[\left(abc\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2+c^2-ac-bc\right)-3ab\left(a+b+c\right)\)
\(\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc+2ab-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
2. \(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
3.Còn có a + b + c = 0 nữa mà bn.
\(a^3+b^3+c^3=3abc\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{matrix}\right.\)
+ \(a^2+b^2+c^2-ab-bc-ac=0\)
\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\ \left(c-a\right)^2=0\end{matrix}\right.\)
\(\Rightarrow a=b=c\)
\(a^3+b^3+c^3=3abc\)
<=> \(a^3+b^3+c^3-3abc=0\)
<=> \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
<=> \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)
<=> \(\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)
đến đây ez tự làm nốt nhé, ko ra ib mk
https://olm.vn/hoi-dap/detail/48946023107.html vào trang đó coi rồi
ta có a+b+c=0 => a+b=-c => a^2 +b^2 =c^2-2ab
tương tự a^2 + c^2 =b^2-2ac
b^2 + c^2 =a^2-2bc
thế cào A= -1/2ab + -1/2ac + -1/2bc = -(c+a+b)/2abc=0 (vì a+b+c=0 )
ta có:a^3+b^3+c^3=3abc
<=>(a+b)^3+c^3-3ab(a+b)-3abc=0
<=>(a+b+c)[(a+b)^2+(a+b)c+c^2]-3ab(a+b...
<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0
<=>1/2(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]...
do a,b,c doi mot khac nhau nen PT<=>a+b+c=0(DPCM)
lộn nha không phải cái trang đó đâu cái này này
Ta có : a + b + c = 0
\(\Rightarrow\)a + b = - c
\(\Rightarrow\left(a+b\right)^3=\left(-c\right)^3\\ \Rightarrow a^3+3a^2b+3ab^2+b^3=-c^3\\ \Rightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\\ \Rightarrow a^3+b^3+c^3=-3ab.\left(-c\right)\\ \Rightarrow a^3+b^3+c^3=3ab\left(đpcm\right)\)
ta có:a+b=(-c)
(a+b)^3=(-c)^3
a^2+3a^2b+3ab^2+b^3=(-c)^3
a^3+b^3+c^3= -3a^2b+3ab^2
a^3+b^3+c^3= -3ab(a+b)
a^3+b^3+c^3= -3ab(-c)
a^3+b^3+c^3=3abc
Xét vế trái a^3+b^3+c^3= [(a+b)(a^2-ab+b^2)]+c^3 (1)
Giả thiết a+b+c=0 => c= - (a+b) => c^3= -(a+b)^3
Thay vào (1) ta có [(a+b)(a^2-ab+b^2)] - (a+b)^3
= (a+b)[a^2-ab+b^2-(a+b)^2]
= (a+b)[a^2-ab+b^2-(a^2+2ab+b^2)]
= (a+b)(a^2-ab+b^2-a^2-2ab-b^2)
= (a+b).(-3ab)
= -(a+b).3ab
= 3abc
đặt = k