Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(a+b+c-abc=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=\left(a+b+c\right)\left(ab+c\left(a+b\right)\right)-abc\)
\(=\left(a+b\right)ab+\left(a+b\right)^2c+abc+c^2\left(a+b\right)-abc\)
\(=\left(a+b\right)\left(ab+c^2+c\left(a+b\right)\right)\)
\(=\left(a+b\right)\left(ab+ac+c^2+bc\right)\)
\(=\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)
\(=\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
Đồng thời:
\(a^2+1=a^2+ab+bc+ac=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)
Tương tự:
\(b^2+1=\left(a+b\right)\left(b+c\right)\)
\(c^2+1=\left(a+c\right)\left(b+c\right)\)
Từ đó:
\(P=\dfrac{\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2}{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)}\)
\(=\dfrac{\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2}{\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2}=1\)
P(x)=\(ax^2+bx+c\) (1)(a\(\ne0\) )
Ta có :
\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}\)\(\Rightarrow\left\{{}\begin{matrix}b=2a\\c=3a\end{matrix}\right.\)(2)
Thay(2) vào (1)\(\Rightarrow P\left(x\right)=ax^2+2ax+3a\)
\(\Rightarrow\dfrac{P\left(-2\right)-3P\left(-1\right)}{a}=\dfrac{4a-4a+3a-3\left(a-2a+3a\right)}{a}\)=\(\dfrac{3a-3a+6a-9a}{a}=\dfrac{-3a}{a}=-3\)
Bài 1:
Áp dụng t.c của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\\ =\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a^3}{b^3}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(dpcm\right)\)
Ta có \(x=\dfrac{1}{2}a+\dfrac{1}{2}b+\dfrac{1}{2}c=\dfrac{a+b+c}{2}\)
Suy ra
M = (x - a)(x - b) + (x - b)(x - c) + (x - c)(x - a) + x2
= x2 - ax - bx + ab + x2 - bx - cx + bc + x2 - ax - cx + ac + x2
= 4x2 - 2ax - 2bx - 2cx + ab + bc + ac
= (2x)2 - 2x(a + b + c) + ab + bc + ac
= \(\left(2\cdot\dfrac{a+b+c}{2}\right)^2-\left(2\cdot\dfrac{a+b+c}{2}\right)\left(a+b+c\right)+ab+bc+ac\)
= ab + bc + ac
Ta có VP:
\(\dfrac{2}{\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}}\)
Thay \(1=ab+bc+ca\)
\(=\dfrac{2}{\sqrt{\left(ab+bc+ca+a^2\right)\left(ab+bc+ca+b^2\right)\left(ab+bc+ca+c^2\right)}}\)
\(=\dfrac{2}{\sqrt{\left[b\left(a+c\right)+a\left(a+c\right)\right]\left[a\left(b+c\right)+b\left(b+c\right)\right]\left[b\left(a+c\right)+c\left(a+c\right)\right]}}\)
\(=\dfrac{2}{\sqrt{\left(a+c\right)\left(a+b\right)\left(a+b\right)\left(b+c\right)\left(b+c\right)\left(a+c\right)}}\)
\(=\dfrac{2}{\sqrt{\left[\left(a+c\right)\left(a+b\right)\left(b+c\right)\right]^2}}\)
\(=\dfrac{2}{\left(a+c\right)\left(a+b\right)\left(b+c\right)}\)
_____________
Ta có VT:
\(\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}\)
Thay \(1=ab+ac+bc\)
\(=\dfrac{a}{ab+ac+bc+a^2}+\dfrac{b}{ab+ac+bc+b^2}+\dfrac{c}{ab+ac+bc+c^2}\)
\(=\dfrac{a}{a\left(a+b\right)+c\left(a+b\right)}+\dfrac{b}{b\left(b+c\right)+a\left(b+c\right)}+\dfrac{c}{c\left(b+c\right)+a\left(b+c\right)}\)
\(=\dfrac{a}{\left(a+c\right)\left(a+b\right)}+\dfrac{b}{\left(a+b\right)\left(b+c\right)}+\dfrac{c}{\left(a+c\right)\left(b+c\right)}\)
\(=\dfrac{a\left(b+c\right)}{\left(a+c\right)\left(b+c\right)\left(a+b\right)}+\dfrac{b\left(a+c\right)}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}+\dfrac{c\left(a+b\right)}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)
\(=\dfrac{ab+ac+ab+bc+ac+bc}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)
\(=\dfrac{2ab+2ac+2bc}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)
\(=\dfrac{2\cdot\left(ab+ac+bc\right)}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)
\(=\dfrac{2}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\left(ab+ac+bc=1\right)\)
Mà: \(VP=VT=\dfrac{2}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)
\(\Rightarrow\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}=\dfrac{2}{\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}}\left(dpcm\right)\)