Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABI và ΔADI có
AB=AD
\(\widehat{BAI}=\widehat{DAI}\)
AI chung
Do đó: ΔABI=ΔADI
=>\(\widehat{BIA}=\widehat{DIA}\)
=>IA là phân giác của góc BID
b: Ta có: ΔABI=ΔADI
=>\(\widehat{ABI}=\widehat{ADI}\) và IB=ID
Ta có: \(\widehat{ABI}+\widehat{IBE}=180^0\)(hai góc kề bù)
\(\widehat{ADI}+\widehat{CDI}=180^0\)(hai góc kề bù)
mà \(\widehat{ABI}=\widehat{ADI}\)
nên \(\widehat{IBE}=\widehat{CDI}\)
Xét ΔIBE và ΔIDC có
\(\widehat{IBE}=\widehat{IDC}\)
IB=ID
\(\widehat{BIE}=\widehat{DIC}\)(hai góc đối đỉnh)
Do đó: ΔIBE=ΔIDC
=>BE=DC
Xét ΔAEC có \(\dfrac{AB}{BE}=\dfrac{AD}{DC}\)
nên BD//CE
Cho tam giác ABC, AB<AC.Tia p/g của góc A cắt BC ở D, trên tia AC lấy điểm E sao cho AE=AB. Gọi tia M là giao điểm của AB va DE
Cmr: a) tam giác ABD=tam giacd AED
b) tam giacd DBM=tam giác DEC
a,Xét ABM và ACM
AB=AC , AM chung , BM=MC(Do M là trung điểm của BC)
ABM = ACM
BAM = CAM (1)
Mà AM nằm giữa AB và AC ( Do M nằm giữa B và C) (2)
Từ (1) và (2)
AM là tia phân giác của BAC
b,Xét BNC và DNC
NC chung , CB = CD
Góc BCN = DCN
Tam giác:BNC = DNC
Góc BNC = DCN
Mà BNC + DCN = 180
BNC = 90
CN vuông góc với BD
a) Xét tam giác ABD: AB = AD (gt).
=> Tam giác ABD cân tại A.
Mà AH là phân giác góc BAD (gt).
=> AH là trung tuyến (Tính chất tam giác cân).
=> H là trung điểm của cạnh BD (đpcm).
a: Ta có: ΔABD cân tại A
mà AH là đường phân giác
nên H là trung điểm của BD
b: Xét ΔABF và ΔADF có
AB=AD
\(\widehat{BAF}=\widehat{DAF}\)
AF chung
Do đó: ΔABF=ΔADF
Suy ra: FB=FD
Xét ΔBFE và ΔDFC có
FB=FD
\(\widehat{FBE}=\widehat{FDC}\)
BE=DC
Do đó: ΔBFE=ΔDFC
Suy ra: \(\widehat{BFE}=\widehat{DFC}\)
mà \(\widehat{DFC}+\widehat{DFB}=180^0\)
nên \(\widehat{BFE}+\widehat{BFD}=180^0\)
=>D,E,F thẳng hàng
a)
Xét ΔAIB và ΔAID có:
Góc BAI= Góc DAI (gt)
AB=AD
AI chung
→ ΔAIB=ΔAID (c.g.c)
⇒ IB=ID (2 cạnh tương ứng)
b)
Vì góc AIB= góc AID (2 góc tương ứng)
sai