K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2021

mai mình giúp nha

15 tháng 10 2021

a, Xét tg ABH vuông tại H có đg cao HE

\(AE\cdot AB=AH^2\left(1\right)\)

Xét tg ACH vuông tại H có đg cao HF

\(AF\cdot AC=AH^2\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow AE\cdot AB=AF\cdot AC\)

b, Xét tg AEF và tg ACB có

\(AE\cdot AB=AF\cdot AC\Rightarrow\dfrac{AE}{AC}=\dfrac{AF}{AB}\\ \widehat{A}.chung\)

Do đó \(\Delta AEF\sim\Delta ACB\left(c.g.c\right)\)

a: ΔAHB vuông tại H có HE là đường cao

nên AE*AB=AH^2

ΔAHC vuông tại H có HF vuông góc AC

nên AF*AC=AH^2

=>AE*AB=AF*AC

b: M=5*sin^2C+5*cos^2C+2*tanB*cot B

=5+2

=7

4 tháng 8 2023

mình cảm ơn Thịnh nhiều

 

a: Xét ΔAHC vuông tại H có sin C=AH/AC

=>AH/8=sin30=1/2

=>AH=4cm

HC=căn AC^2-AH^2=4*căn 3(cm)

b: ΔAHB vuông tại H có  HE là đường cao

nên AE*AB=AH^2

ΔAHC vuông tại H có HF là đường cao

nên AF*AC=AH^2

=>AE*AB=AF*AC

=>AE/AC=AF/AB

Xét ΔAEF và ΔACB có

AE/AC=AF/AB

góc A chung

=>ΔAEF đồng dạng với ΔACB

=>góc AEF=góc ACB

31 tháng 7 2023

b

Δ ABD ⊥ tại D có DE là đường cao.

=> \(AD^2=AE.AB\) (hệ thức lượng) (1)

Δ ADC ⊥ tại C có DC là đường cao.

=> \(AD^2=AF.AC\) (hệ thức lượng) (2)

Từ (1), (2) suy ra: \(AE.AB=AF.AC\left(=AD^2\right)\)

Xét Δ AEF và Δ ACB có: 

\(\widehat{EAF}=\widehat{CAB}\) (góc chung)

\(\dfrac{AF}{AE}=\dfrac{AB}{AC}\left(cmt\right)\)

=> Δ AEF đồng dạng Δ ACB (c.g.c)

31 tháng 7 2023

a

Theo hệ thức lượng có: \(DF^2=AF.FC=3,6.6,4=23,04\Rightarrow DF=\sqrt{23,04}=4,8\)

\(AC=AF+FC=3,6+6,4=10\)

\(S_{ADC}=\dfrac{1}{2}AC.DF=\dfrac{1}{2}.10.4,8=24\)

 

23 tháng 10 2023

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=10^2-6^2=64\)

=>AC=8(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AH=\dfrac{6\cdot8}{10}=4,8\left(cm\right)\\BH=\dfrac{6^2}{10}=3,6\left(cm\right)\end{matrix}\right.\)

b: ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra AE*AB=AF*AC

=>AE/AC=AF/AB

Xét ΔAEF vuông tại A và ΔACB vuông tại A có

AE/AC=AF/AB

Do đó: ΔAEF đồng dạng với ΔACB

c: Xét ΔBAC có BD là phân giác

nên \(\dfrac{AD}{AB}=\dfrac{CD}{CB}\)

=>\(\dfrac{AB}{AD}=\dfrac{CB}{CD}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AB}{AD}=\dfrac{CB}{CD}=\dfrac{AB+BC}{AD+CD}=\dfrac{AB+BC}{AC}\)(1)

ΔBAD vuông tại A có

\(cotABD=\dfrac{AB}{AD}\)(2)

BD là phân giác của góc ABC

=>\(\widehat{ABD}=\widehat{DBC}\left(3\right)\)

Từ (1),(2),(3) suy ra \(cotDBC=\dfrac{AB+BC}{AC}\)

27 tháng 10 2023

a: Xét ΔABH vuông tại H có HD là đường cao

nên \(BD\cdot BA=BH^2\)

=>\(BA\cdot3,6=6^2=36\)

=>BA=10(cm)

AD+DB=BA

=>AD+3,6=10

=>AD=6,4(cm)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HA=\sqrt{10^2-6^2}=8\left(cm\right)\)

Xét ΔAHB vuông tại H có HD là đường cao

nên \(HD\cdot AB=HA\cdot HB\)

=>\(HD\cdot10=6\cdot8=48\)

=>HD=4,8(cm)

b: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

=>\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Xét ΔADE và ΔACB có

AD/AC=AE/AB

\(\widehat{DAE}\) chung

Do đó: ΔADE đồng dạng với ΔACB

6 tháng 7 2021

a) Ta có: \(\angle HEA=\angle HFA=\angle EAF=90\Rightarrow AEHF\) là hình chữ nhật

\(\Delta AHB\) vuông tại H có HE là đường cao \(\Rightarrow AE.AB=AH^2\)

\(\Delta AHC\) vuông tại H có HF là đường cao \(\Rightarrow AF.AC=AH^2\)

\(\Rightarrow AE.AB=AF.AC\)

b) \(\Delta ABC\) vuông tại A có đường cao AH \(\Rightarrow\left\{{}\begin{matrix}AB^2=BH.BC\\AC^2=CH.BC\end{matrix}\right.\)

\(\Rightarrow AB^2-AC^2=BH.BC-CH.BC=BC\left(BH-CH\right)\)

\(=\left(BH+CH\right)\left(BH-CH\right)=BH^2-CH^2\)

c) Ta có: \(\dfrac{1}{HF^2}-\dfrac{1}{CH^2}=\dfrac{1}{AF.FC}-\dfrac{1}{CA.CF}=\dfrac{1}{CF}\left(\dfrac{1}{AF}-\dfrac{1}{CA}\right)\)

\(=\dfrac{1}{CF}.\dfrac{CF}{AF.AC}=\dfrac{1}{AH^2}\)

Lại có: \(\dfrac{1}{HE^2}-\dfrac{1}{BH^2}=\dfrac{1}{BE.EA}-\dfrac{1}{BE.BA}=\dfrac{1}{BE}\left(\dfrac{1}{EA}-\dfrac{1}{BA}\right)\)

\(=\dfrac{1}{BE}.\dfrac{BE}{EA.BA}=\dfrac{1}{AH^2}\)

\(\Rightarrow\dfrac{1}{HF^2}-\dfrac{1}{CH^2}=\dfrac{1}{HE^2}-\dfrac{1}{BH^2}\Rightarrow\dfrac{1}{BH^2}-\dfrac{1}{CH^2}=\dfrac{1}{HE^2}-\dfrac{1}{HF^2}\)

d) Ta có: \(AH^4=\left(AH^2\right)^2=\left(BH.CH\right)^2=BH^2.CH^2\)

\(=BE.BA.CF.CA=BE.CF.\left(AB.AC\right)=BE.CF.AH.BC\)

\(\Rightarrow BC.BE.CF=AH^3\)

e) Ta có: \(AE.BE+AF.CF=EH^2+HF^2=EF^2=AH^2=BH.CH\)

f) Ta có: \(3AH^2+BE^2+CF^2=3AH^2+BH^2-EH^2+CH^2-HF^2\)

\(=3AH^2+BH^2+CH^2-\left(EH^2+HF^2\right)\)

\(=3AH^2+BH^2+CH^2-EF^2=3AH^2+BH^2+CH^2-AH^2\)

\(=BH^2+CH^2+2AH^2=BH^2+CH^2+2BH.CH\)

\(=\left(BH+CH\right)^2=BC^2\)

1 tháng 8 2023

.Ta có :

AH⊥BC,HE⊥AB→\(\widehat{AEH}=\widehat{AHB}\)

=> \(\Delta AEH\approx\Delta AHB\)(g.g)

=>\(\dfrac{AE}{AH}=\dfrac{AH}{AB}\)

=>AH\(^2\)=AE.AB

Lam tuong tu ta dc AH\(^2\)=AF.AC

=> AE.AB=AF.AC

 

a: ΔAHB vuông tại H có HE là đường cao

nên AE*AB=AH^2

ΔAHC vuông tại H có HF là đường cao

nen AF*AC=AH^2

=>AE*AB=AF*AC

=>AE/AC=AF/AB

=>ΔAEF đồng dạng với ΔACB

14 tháng 10 2023


                   

14 tháng 10 2023

a.Xét ΔABC vuông tại A có:
    +AB²+AC²=BC²(Pytago)
  ⇔AC²=BC²-AB²
  ⇔AC²=6²-3²=27
  ⇔AC=3√3(cm)
   +sinB=AC/BC(Định nghĩa tỉ số lượng giác)
    ⇔sinB=3√3/6
    ⇒B=60°
   +/B+C=90°
    ⇒C=90°-B=30°
b.Xét ΔABC vuông tại A có:
   AH.BC=AC.AB(Hệ thức về cạnh và góc trong tam giác vuông)
⇔AH=AC.AB/BC
⇔AH=3√3.5/6≈4,33(cm)
   Xét tứ giác AEHF có:
   A=AEH=AFH(=90°)
⇒AEHF là hình chữ nhật(dhnb)
  ⇒EF=AH(tính chất hcn AEHF)
c.Xét ΔABH vuông tại H:
   HE²=EB.EA(Hệ thức về cạnh và góc trong tam giác vuông) (1)
  Xét ΔAHC vuông tại H :
   HF²=AF.FC(Hệ thức về cạnh và góc trong tam giác vuông) (2)
  Vì AEHF là hcn (cmb)
⇒EHF=90°(t/c)
  Xét ΔHEF vuông tại H có:
  HE²+HF²=EF²(pytago) (3)
  Từ (1),(2) và (3)⇒EA.EB+AF.FC=EF²
                            ⇒EA.EB+AF.FC=AH²(AH=EF)
                            ⇒EA.EB+AF.FC≈4,33²≈18,7489