Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có DE//BC
nên \(\dfrac{AE}{EC}=\dfrac{AD}{DB}\)
=>\(\dfrac{AD}{8}=\dfrac{3}{4}\)
=>\(AD=8\cdot\dfrac{3}{4}=6\left(cm\right)\)
AB=BD+AD
=6+8
=14(cm)
b: Xét ΔABC có DE//BC
nên \(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)
mà \(\dfrac{AD}{DB}=\dfrac{EC}{AE}\)
nên \(\dfrac{AE}{EC}=\dfrac{EC}{AE}\)
=>\(AE^2=EC^2\)
=>AE=EC
=>E là trung điểm của AC
Xét ΔABC có
E là trung điểm của AC
ED//BC
Do đo: D là trung điểm của AB
Do DE song song BC
=> Theo định lý Talet, DA/DB = EA/EC
Mà DA/DB= EC/EA
=> EC=EA
=> E là trung điểm AC
=> DE là đường trung bình của tam giác ABC
=> D cũng là trung điểm AB
a. Xét tam giác ABC có:
DE//BC (gt)
=>\(\dfrac{DA}{DB}=\dfrac{EA}{EC}\)(định lý Ta-let) (1)
Xét tam giác ADE có:
AD//CF (gt)
=>\(\dfrac{EA}{EC}=\dfrac{DE}{EF}\)(định lý Ta-let) (2)
Từ (1) và (2) suy ra:\(\dfrac{DA}{DB}=\dfrac{ED}{FE}\)
AD=6,8-4=2,8cm
DE//BC
=>AE/EC=AD/DB
=>4,2/EC=2,8/4=7/10
=>EC=6cm
a: Xét tứ giác BFED có
FE//BD
DE//BF
Do đó: BFED là hình bình hành
Suy ra: DE=BF
mà AE=BF
nên ED=EA
hay ΔAED cân tại E