Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi K là hình chiếu của M lên AC. Xét tam giác MBH vuông tại H và MCK vuông tại K, ta có:
\(MB=MC\) (M là trung điểm BC); \(\widehat{B}=\widehat{C}\) (tam giác ABC cân tại A)
\(\Rightarrow\Delta MBH=\Delta MCK\left(ch-gn\right)\) \(\Rightarrow MH=MK\)
Ta thấy MK chính là khoảng cách từ AC đến M, đồng thời MK bằng MH là bán kính của đường tròn (M; MH) nên AC tiếp xúc với (M) (đpcm)
Gọi \(I'\) là giao điểm của CD với (O) . CA và DB kéo dài cắt nhau tại K . Ta dễ dàng chứng minh được K thuộc (O) và tam giác KCD vuông cân tại K. (1)
Trước tiên ta chứng minh \(C,M,D\) thẳng hàng :
Ta có \(\widehat{CMA}+\widehat{AMB}+\widehat{BMD}=45^o+90^o+45^o=180^o\) => C,M,D thẳng hàng. (2)
Xét trong (O) có : \(\widehat{I'MB}=\widehat{I'KB}=\frac{1}{2}\text{sđcung}BI'=45^o\)
Từ đó suy ra được \(\hept{\begin{cases}KI'\perp CD\left(3\right)\\\text{ }I'\in\left(O\right)\left(\text{**}\right)\end{cases}}\)
Từ (1) và (3) suy ra \(I'\) là trung điểm của CD, mà I cũng là trung điểm của CD
\(\Rightarrow\hept{\begin{cases}I'\equiv I\\CI=ID\end{cases}}\) (*)
Từ (*) và (**) ta suy ra đpcm.