Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left(a;b;c\right)=\left(x^2;y^2;z^2\right)\Rightarrow x^2+y^2+z^2\ge1\)
\(P=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}=A+B\)
\(A=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\Rightarrow A^2=\frac{x^4}{y^2}+\frac{y^4}{z^2}+\frac{z^4}{x^2}+2\left(\frac{x^2y}{z}+\frac{y^2z}{x}+\frac{xz^2}{y}\right)\)
Mà: \(\frac{x^4}{y^2}+\frac{x^2y}{z}+\frac{x^2y}{z}+z^2\ge4x^2\)
Tương tự và cộng lại ta có:
\(A^2+\left(x^2+y^2+z^2\right)\ge4\left(x^2+y^2+z^2\right)\Rightarrow A^2\ge3\left(x^2+y^2+z^2\right)=3\)
Xét \(B=\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}\Rightarrow B^2=\frac{x^4}{z^2}+\frac{y^4}{x^2}+\frac{z^4}{y^2}+2\left(\frac{xy^2}{z}+\frac{yz^2}{x}+\frac{zx^2}{y}\right)\)
Có: \(\frac{x^4}{z^2}+\frac{zx^2}{y}+\frac{zx^2}{y}+y^2\ge4x^2\)
\(\Rightarrow B^2\ge3\left(x^2+y^2+z^2\right)=3\) \(\Rightarrow B\ge\sqrt{3}\)
\(\Rightarrow P\ge2\sqrt{3}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
4.
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)}{ab+bc+ca}\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge\frac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)
Dấu "=" xảy ra khi \(a=b=c\)
5.
\(\frac{a}{bc}+\frac{b}{ca}\ge2\sqrt{\frac{ab}{bc.ca}}=\frac{2}{c}\) ; \(\frac{a}{bc}+\frac{c}{ab}\ge\frac{2}{b}\) ; \(\frac{b}{ca}+\frac{c}{ab}\ge\frac{2}{a}\)
Cộng vế với vế:
\(2\left(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
1.
Áp dụng BĐT \(x^2+y^2+z^2\ge xy+yz+zx\)
\(\Rightarrow\left(\sqrt{ab}\right)^2+\left(\sqrt{bc}\right)^2+\left(\sqrt{ca}\right)^2\ge\sqrt{ab}.\sqrt{bc}+\sqrt{ab}.\sqrt{ac}+\sqrt{bc}.\sqrt{ac}\)
\(\Rightarrow ab+bc+ca\ge\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
2.
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt[]{\frac{ab.bc}{ca}}=2b\) ; \(\frac{ab}{c}+\frac{ac}{b}\ge2a\) ; \(\frac{bc}{a}+\frac{ac}{b}\ge2c\)
Cộng vế với vế:
\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\)
3.
Từ câu b, thay \(c=1\) ta được:
\(ab+\frac{b}{a}+\frac{a}{b}\ge a+b+1\)
Lời giải:
Áp dụng BĐT Bunhiacopkxy:
$(a^3+1)(a+1)\geq (a^2+1)^2\Rightarrow a^3+1\geq \frac{(a^2+1)^2}{a+1}; a+1\leq \sqrt{2(a^2+1)}$
$\Rightarrow \frac{a^3+1}{b\sqrt{a^2+1}}\geq \frac{\sqrt{(a^2+1)^3}}{b(a+1)}\geq \frac{a^2+1}{\sqrt{2}b}$
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế suy ra:
$\text{VT}\geq \frac{a^2+1}{\sqrt{2}b}+\frac{b^2+1}{\sqrt{2}c}+\frac{c^2+1}{\sqrt{2}a}$
Bài toán sẽ được chứng minh khi ta chỉ ra được: $\frac{a^2+1}{\sqrt{2}b}+\frac{b^2+1}{\sqrt{2}c}+\frac{c^2+1}{\sqrt{2}a}\geq \sqrt{2}(a+b+c)$
$\Leftrightarrow \frac{a^2+1}{b}+\frac{b^2+1}{c}+\frac{c^2+1}{a}\geq 2(a+b+c)$
$\Leftrightarrow ab^3+bc^3+ca^3+ab+bc+ac\geq 2abc(a+b+c)(*)$
Thật vậy, theo BĐT AM-GM:
$ab^3+bc+a^2b^2c^2\geq 3ab^2c$. Tương tự với $bc^3+ca+a^2b^2c^2\geq 3abc^2; ca^3+ab+a^2b^2c^2\geq 3a^2bc$
Cộng theo vế và thu gọn:
$ab^3+bc^3+ca^3+ab+bc+ac\geq 3abc(a+b+c-abc)(1)$
Mà: $(a+b+c)^3\geq 27abc\geq 27(abc)^3$ (do $abc\leq 1$) nên $a+b+c\geq 3abc(2)$
Từ $(1); (2)\Rightarrow ab^3+bc^3+ca^3+ab+bc+ac\geq 2abc(a+b+c)$. BĐT $(*)$ được chứng minh.
Bài toán hoàn tất.
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{1}{2\sqrt{2}}\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)\)
\(\Leftrightarrow\sqrt{2}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{1}{2\sqrt{2}}\left(\sqrt{2}.\sqrt{a^2+b^2}+\sqrt{2}.\sqrt{b^2+c^2}+\sqrt{2}.\sqrt{c^2+a^2}\right)\)
\(VT\ge\sqrt{2}.\frac{9}{2\left(a+b+c\right)}\ge\sqrt{2}.\frac{9}{2\sqrt{3\left(a^2+b^2+c^2\right)}}=\frac{3\sqrt{2}}{2}\left(1\right)\)
\(VP\le\frac{1}{2\sqrt{2}}.\frac{2\left(a^2+b^2+c^2\right)+6}{2}=\frac{3\sqrt{2}}{2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow VT\ge VP\)
Dấu \("="\) xảy ra khi \(a=b=c=1\)
Áp dụng bđt Cô si với 2 số dương là: \(\sqrt{\frac{b+c}{a}}\) và 1 ta có:
\(\left(\frac{b+c}{a}+1\right):2\ge\sqrt{\frac{b+c}{a}.1}\)
\(\Leftrightarrow\) \(\frac{a+b+c}{2a}\ge\sqrt{\frac{b+c}{a}}\)
hay \(\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\left(1\right)\)
Tương tự như trên ta cũng có:
\(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c}\left(2\right)\)
\(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\left(3\right)\)
Từ (1); (2) và (3) \(\Rightarrow\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=\frac{2.\left(a+b+c\right)}{a+b+c}=2\)
Dấu "=" xảy ra khi \(\begin{cases}\sqrt{\frac{b+c}{a}}=1\\\sqrt{\frac{a+c}{b}}=1\\\sqrt{\frac{a+b}{c}}=1\end{cases}\)\(\Leftrightarrow\begin{cases}\frac{b+c}{a}=1\\\frac{a+c}{b}=1\\\frac{a+b}{c}=1\end{cases}\)\(\Leftrightarrow\begin{cases}b+c=a\\a+c=b\\a+b=c\end{cases}\)
\(\Rightarrow2.\left(a+b+c\right)=a+b+c\)\(\Rightarrow a+b+c=0\), mâu thuẫn với đề bài a; b; c là các số dương
Như vậy dấu "=" không xảy ra
Do đó, \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}>2\left(đpcm\right)\)
1)
\(2a+\frac{4}{a}+\frac{16}{a+2}=\left(a+\frac{4}{a}\right)+\left[\left(a+2\right)+\frac{16}{a+2}\right]-2\ge4+8-2=10\)
Dấu "=" xảy ra khi a=2
2)
\(\hept{\begin{cases}\sqrt{a\left(1-4a\right)}=\frac{1}{2}\sqrt{4a\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4a+1-4a}{2}=\frac{1}{4}\\\sqrt{b\left(1-4b\right)}=\frac{1}{2}\sqrt{4\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4b+1-4b}{2}=\frac{1}{4}\\\sqrt{c\left(1-4c\right)}=\frac{1}{2}\sqrt{4c\left(1-4c\right)}\le\frac{1}{2}\cdot\frac{4c+1-4c}{2}=\frac{1}{4}\end{cases}}\)
\(\Rightarrow\sqrt{a\left(1-4a\right)}+\sqrt{b\left(1-4b\right)}+\sqrt{c\left(1-4c\right)}\le\frac{3}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{8}\)
KHI TA SỐNG !:
chuẩn 10đ :v