\(\sqrt{\dfrac{2a}{2b+2c-a}}+\sqrt{\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2017

Áp dụng BĐT AM-GM ta có:

\(P=\sqrt{\dfrac{2a}{2b+2c-a}}+\sqrt{\dfrac{2b}{2c+2a-b}}+\sqrt{\dfrac{2c}{2a+2b-c}}\)

\(=\dfrac{\sqrt{6}a}{\sqrt{3a\left(2b+2c-a\right)}}+\dfrac{\sqrt{6}b}{\sqrt{3b\left(2c+2a-b\right)}}+\dfrac{\sqrt{6}c}{\sqrt{3c\left(2a+2b-c\right)}}\)

\(\ge\dfrac{\sqrt{6}a}{\dfrac{3a+2b+2c-a}{2}}+\dfrac{\sqrt{6}b}{\dfrac{3b+2c+2a-b}{2}}+\dfrac{\sqrt{6}c}{\dfrac{3c+2a+2b-c}{2}}\)

\(\ge\dfrac{\sqrt{6}a}{a+b+c}+\dfrac{\sqrt{6}b}{a+b+c}+\dfrac{\sqrt{6}c}{a+b+c}\)

\(=\dfrac{\sqrt{6}\left(a+b+c\right)}{a+b+c}=\sqrt{6}\)

Source of Question: Câu hỏi của Hiếu Cao Huy - Toán lớp 9 | Học trực tuyến Xét pt (1): \(\Delta=b^2-4ac\) \(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}\); \(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}\) Xét pt (2) : \(\Delta=b^2-4ac\) \(y_1=\dfrac{-b+\sqrt{\Delta}}{2c}\) ; \(y_2=\dfrac{-b-\sqrt{\Delta}}{2c}\) Thay vào M:...
Đọc tiếp

Source of Question: Câu hỏi của Hiếu Cao Huy - Toán lớp 9 | Học trực tuyến

Xét pt (1): \(\Delta=b^2-4ac\)

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}\); \(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}\)

Xét pt (2) : \(\Delta=b^2-4ac\)

\(y_1=\dfrac{-b+\sqrt{\Delta}}{2c}\) ; \(y_2=\dfrac{-b-\sqrt{\Delta}}{2c}\)

Thay vào M:

\(M=\dfrac{\left(-b+\sqrt{\Delta}\right)^2}{4a^2}+\dfrac{\left(-b-\sqrt{\Delta}\right)^2}{4a^2}+\dfrac{\left(-b+\sqrt{\Delta}\right)^2}{4c^2}+\dfrac{\left(-b-\sqrt{\Delta}\right)^2}{4c^2}\)

\(=\dfrac{b^2-2b\sqrt{\Delta}+\Delta}{4a^2}+\dfrac{b^2+2b\sqrt{\Delta}+\Delta}{4a^2}+\dfrac{b^2-2b\sqrt{\Delta}+\Delta}{4c^2}+\dfrac{b^2+2b\sqrt{\Delta}+\Delta}{4c^2}\)

\(=\dfrac{2b^2+2\Delta}{4a^2}+\dfrac{2b^2+2\Delta}{4c^2}=\dfrac{b^2+\Delta}{2a^2}+\dfrac{b^2+\Delta}{2c^2}=\dfrac{b^2c^2+\Delta c^2}{2a^2c^2}+\dfrac{a^2b^2+\Delta a^2}{2a^2c^2}\)

\(=\dfrac{b^2\left(a^2+c^2\right)+\Delta\left(a^2+c^2\right)}{2a^2c^2}=\dfrac{\left(b^2+\Delta\right)\left(a^2+c^2\right)}{2a^2c^2}=\dfrac{\left(b^2+b^2-4ac\right)\left(a^2+c^2\right)}{2a^2c^2}\)

\(=\dfrac{\left(2b^2-4ac\right)\left(a^2+c^2\right)}{2a^2c^2}=\dfrac{\left(b^2-2ac\right)\left(a^2+c^2\right)}{a^2c^2}=\dfrac{a^2b^2-2a^3c+b^2c^2-2ac^3}{a^2c^2}\)

\(=\dfrac{a^2b^2}{a^2c^2}+\dfrac{b^2c^2}{a^2c^2}-\dfrac{2a^3c}{a^2c^2}-\dfrac{2ac^3}{a^2c^2}=\dfrac{b^2}{c^2}+\dfrac{b^2}{a^2}-\dfrac{2a}{c}-\dfrac{2c}{a}\)

\(=\left(\dfrac{b^2}{c^2}-\dfrac{2ac}{c^2}\right)+\left(\dfrac{b^2}{a^2}-\dfrac{2ac}{a^2}\right)=\dfrac{b^2-2ac}{c^2}+\dfrac{b^2-2ac}{a^2}\)

\(=\left(b^2-2ac\right)\left(\dfrac{1}{c^2}+\dfrac{1}{a^2}\right)\)

Bài tập Toán

Thanks a lots for your answering ^^!

Hiếu Cao Huy: Wait together!

2
12 tháng 7 2017

M=\(\left(x_1+x_2\right)^2-2x_1.x_2+\left(y_1+y_2\right)^2-2y_1.y_2\)

Áp dụng định lý viettel :( :v )

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}\\x_1x_2=\dfrac{c}{a}\end{matrix}\right.\);\(\left\{{}\begin{matrix}y_1+y_2=-\dfrac{b}{c}\\y_1y_2=\dfrac{a}{c}\end{matrix}\right.\)

\(M=\dfrac{b^2}{a^2}-\dfrac{2c}{a}+\dfrac{b^2}{c^2}-\dfrac{2a}{c}=\dfrac{b^2-4ac}{a^2}+\dfrac{b^2-4ac}{c^2}+2\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\)

\(\ge2\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\ge4\)

Dấu = xảy ra: \(\left\{{}\begin{matrix}a=c\\b^2=4ac\end{matrix}\right.\)\(\Leftrightarrow b^2=4a^2=4c^2\)

12 tháng 7 2017

@_@ oho đưa thẳng câu hỏi luôn đi ; nói như zầy chưa nghỉ ra câu trả lời ; chống mặt chết trước rồi

AH
Akai Haruma
Giáo viên
12 tháng 2 2018

Lời giải:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(P=\frac{a\sqrt{a}}{\sqrt{2c+a+b}}+\frac{b\sqrt{b}}{\sqrt{2a+b+c}}+\frac{c\sqrt{c}}{\sqrt{2b+c+a}}\)

\(P=\frac{a^2}{\sqrt{a(2c+a+b)}}+\frac{b^2}{\sqrt{b(2a+b+c)}}+\frac{c^2}{\sqrt{c(2b+c+a)}}\)

\(\geq \frac{(a+b+c)^2}{\sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+a+c)}}\)

Áp dụng BĐT Bunhiacopxky:

\((\sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+a+c)})^2\leq (a+b+c[((2c+a+b)+(2a+b+c)+(2b+a+c)]\)

\(\Leftrightarrow (\sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+a+c)})^2\leq 4(a+b+c)^2\)

\(\Leftrightarrow \sqrt{a(2c+a+b)}+\sqrt{b(2a+b+c)}+\sqrt{c(2b+a+c)}\leq 2(a+b+c)\)

Do đó:

\(P\geq \frac{(a+b+c)^2}{2(a+b+c)}=\frac{a+b+c}{2}=\frac{3}{2}\)

Vậy \(P_{\min}=\frac{3}{2}\)

Dấu bằng xảy ra khi \(a=b=c=1\)

5 tháng 12 2018

Ta có: \(\sqrt{2a^2+ab+2b^2}=\sqrt{\dfrac{5}{4}\left(a+b\right)^2+\dfrac{3}{4}\left(a-b\right)^2}\ge\sqrt{\dfrac{5}{4}}\left(a+b\right)\)

Cmtt ta có: \(\sqrt{2b^2+bc+2c^2}\ge\sqrt{\dfrac{5}{4}}\left(b+c\right)\)

\(\sqrt{2c^2+ca+2a^2}\ge\sqrt{\dfrac{5}{4}}\left(c+a\right)\)

\(\Rightarrow P\ge\sqrt{5}\left(a+b+c\right)\ge\dfrac{\sqrt{5}}{3}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=\dfrac{\sqrt{5}}{3}\)

Dấu "=" xảy ra <=> a = b = c = \(\dfrac{1}{9}\)

13 tháng 6 2017

Từ \(a^2b^2+b^2c^2+c^2a^2\ge a^2b^2c^2\)\(\Rightarrow\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=1\)

bài này tui làm rồi ở đây

16 tháng 1 2021

BĐT trên bị ngược dấu rồi.

Theo công thức Heron:

\(S=\dfrac{1}{4}\sqrt{\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}\).

Do đó ta chỉ cần cm:

\(\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\leq a^2b^2+b^2c^2+c^2a^2\). (1)

Ta có \(\left(1\right)\Leftrightarrow a^4+b^4+c^4-a^2b^2-b^2c^2-c^2a^2\ge0\Leftrightarrow\dfrac{\left(a^2-b^2\right)^2}{2}+\dfrac{\left(b^2-c^2\right)^2}{2}+\dfrac{\left(c^2-a^2\right)^2}{2}\ge0\) (luôn đúng).

Do đó bđt ban đầu cũng đúng.

Đẳng thức xảy ra khi tam giác đó đều.

AH
Akai Haruma
Giáo viên
4 tháng 2 2021

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(T=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{c}+\frac{1}{a}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\geq \frac{(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})^2}{2(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})}=\frac{1}{2}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\)

\(\geq \frac{1}{2}.3\sqrt[3]{\frac{1}{abc}}=\frac{3}{2}\) (theo BĐT AM-GM)

Vậy $T_{\min}=\frac{3}{2}$.

Giá trị này đạt tại $a=b=c=1$