\(\frac{2}{9}\le a^3...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2019

Ta chứng minh BĐT \(\frac{â^3+b^3+c^3}{3}\ge\left(\frac{a+b+c}{3}\right)^3\)^3

(do nó rất dài nên mình sẽ bỏ phần này, thông cảm)(Đẳng thức xảy ra khi a=b=c)

Áp dụng ta có \(\frac{a^3+b^3+c^3}{3}\ge\left(\frac{1}{3}\right)^3=\frac{1}{27}\)

\(\Rightarrow a^3+b^3+c^3\ge\frac{1}{9}\)(Đẳng thức xảy ra khi a=b=c và a + b + c =1 => a = b = c = 1/3 )

Mặt khác, ta có \(a+b+c\ge3\sqrt[3]{abc}\Rightarrow1\ge27abc\Rightarrow abc\ge\frac{1}{27}\)=>  \(3abc\ge\frac{1}{9}\)(Đẳng thức xảy ra khi a = b = c = 1/3)

=> \(a^3+b^3+c^3+3abc\ge\frac{2}{9}\)(Đẳng thức khi a = b = c = 1/3)

Mình mới nghĩ được vậy thôi bạn à!

12 tháng 3 2018

2.

a, Có : (a+b+c).(1/a+1/b+1/c)

>= \(3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}\)

   = 9

=> ĐPCM

Dấu "=" xảy ra <=> a=b=c > 0

12 tháng 3 2018

2.

b, Xét : 2(a+b+c).(1/a+b + 1/b+c + 1/c+a) >= 9 ( theo bđt ở câu a đã c/m )

<=> (a+b+c).(1/a+b + 1/b+c + 1/c+a) >= 9/2

<=> a/b+c + b/c+a + c/a+b + 3 >= 9/2

<=> a/b+c + b/c+a + c/a+b >= 9/3 - 3 = 3/2

=> ĐPCM

Dấu "=" xảy ra <=> a=b=c > 0

11 tháng 8 2016

Áp dụng bđt \(\frac{m^2}{x}+\frac{n^2}{y}+\frac{p^2}{z}\ge\frac{\left(m+n+p\right)^2}{x+y+z}\)

được : \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{\left(1+1+1\right)^2}{a+b-c+b+c-a+c+a-b}\)

\(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)

11 tháng 8 2016

công thức 

\(\frac{m^2}{x}+\frac{n^2}{y}+\frac{p^2}{z}\ge\frac{\left(m+n+p\right)^2}{a+y+z}\) 

chứng minh thế nào

 

 

10 tháng 8 2020

Dễ thấy a,b,c là độ dài của tam giác nên

a + b - c > 0 ; b + c - a > 0 ; c+a-b > 0

Theo Cauchy-Schwarz thì

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)

Dấu "=" xảy ra khi a=b=c = 1

10 tháng 8 2020

Ta có: Vì chu vi của tam giác là 3 nên a + b + c = 3

Xét: \(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{2b}=\frac{2}{b}\)

Tương tự CM được:

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\) và \(\frac{1}{c+a-b}+\frac{1}{a+b-c}\ge\frac{2}{a}\)

Cộng vế 3 BĐT trên lại ta được:

\(2VT\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow VT\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3^2}{a+b+c}=\frac{9}{3}=3\)

Dấu "=" xảy ra khi: \(a=b=c\)

2 tháng 5 2018

vì a b c là 3 cạnh của 1 tam giác nên a b c dương \(\Rightarrow\)\(\frac{a^2}{b+c}\)\(\frac{b^2}{c+a}\)\(\frac{c^2}{a+b}\)dương 

chu vi của tam giác có cạnh a b c là 4 nên a+b+c=4

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}>=\frac{\left(a+b+c\right)^2}{b+c+c+a+a+b}\)(bđt cauchy schwat dạng engel)

\(=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{4^2}{4\cdot2}=\frac{16}{8}=2\)

dấu = xảy ra khi \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)\(\Rightarrow a=b=c=\frac{4}{3}\)

vậy \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}>=2\)dấu = xảy ra khi a=b=c=\(\frac{4}{3}\)

3 tháng 5 2018

cảm ơn bạn nha

3 tháng 4 2020

\(\left(p-a\right)\left(p-b\right)\left(p-c\right)\le\frac{1}{8}abc\)

Do p là nửa chu vi của tam giác \(\Rightarrow p=\frac{a+b+c}{2}\)thay vào ta được :

\(VT=\left(\frac{a+b+c}{2}-a\right)\left(\frac{a+b+c}{2}-b\right)\left(\frac{a+b+c}{2}-c\right)\)

\(=\left(\frac{b+c-a}{2}\right)\left(\frac{a+c-b}{2}\right)\left(\frac{a+b-c}{2}\right)\)

\(=\frac{\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)}{8}\)

Áp dụng BĐT \(xy\le\frac{\left(x+y\right)^2}{2}\)

\(\Rightarrow\hept{\begin{cases}\left(b+c-a\right)\left(a+c-b\right)\le c^2\\\left(a+b-c\right)\left(a+c-b\right)\le a^2\\\left(b+c-a\right)\left(a+b-c\right)\le b^2\end{cases}}\)

\(\Rightarrow\left[\left(b+c-a\right)\left(a+b-c\right)\left(a+c-b\right)\right]^2\le\left(abc\right)^2\)

\(\Rightarrow\left(b+c-a\right)\left(a+b-c\right)\left(a+c-b\right)\le abc\)

\(\Rightarrow\frac{\Rightarrow\left(b+c-a\right)\left(a+b-c\right)\left(a+c-b\right)}{8}\le\frac{1}{8}abc\)

\(\Rightarrowđpcm\)

\(\)