K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 2 2019

Lời giải:
Áp dụng BĐT AM-GM cho các số dương:
\((a+b-c)(b+c-a)\leq \left(\frac{a+b-c+b+c-a}{2}\right)^2=b^2\)

\((a+b-c)(c+a-b)\leq \left(\frac{a+b-c+c+a-b}{2}\right)^2=a^2\)

\((b+c-a)(c+a-b)\leq \left(\frac{b+c-a+c+a-b}{2}\right)^2=c^2\)

Nhân theo vế và rút gọn :

\(\Rightarrow (a+b-c)(b+c-a)(c+a-b)\leq abc\)

\(\Leftrightarrow (6-2c)(6-2a)(6-2b)\leq abc\) (do $a+b+c=6$)

\(\Leftrightarrow 8[27-9(a+b+c)+3(ab+bc+ac)-abc]\leq abc\)

\(\Leftrightarrow 8(-27+3(ab+bc+ac)-abc)\leq abc\)

\(\Leftrightarrow abc\geq \frac{8}{3}(ab+bc+ac)-24\)

Do đó:

\(3(a^2+b^2+c^2)+2abc\geq 3(a^2+b^2+c^2)+\frac{16}{3}(ab+bc+ac)-48\)

\(=3(a+b+c)^2-\frac{2}{3}(ab+bc+ac)-48=60-\frac{2}{3}(ab+bc+ac)\)

Mà theo hệ quả của BĐT AM-GM \(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=12\)

\(\Rightarrow 3(a^2+b^2+c^2)+2abc\geq 60-\frac{2}{3}.12=52\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=2$

25 tháng 11 2017

Có a,b,c là độ dài 3 cạnh 1 tam giác.

17 tháng 12 2017

Áp dụng BĐT tam giác, ta có: 

         \(\hept{\begin{cases}a< b+c\\b< c+a\\c< a+b\end{cases}\Rightarrow\hept{\begin{cases}2a< a+b+c\\2b< a+b+c\\2c< a+b+c\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}2a< 6\\2b< 6\\2c< 6\end{cases}\Rightarrow\hept{\begin{cases}a< 3\\b< 3\\c< 3\end{cases}\Rightarrow}}\hept{\begin{cases}3-a>0\\3-b>0\\3-c>0\end{cases}}\)

Áp dụng BĐT Cauchy cho bộ ba số thực không âm, ta có: 

\(\left(3-a\right)\left(3-b\right)\left(3-c\right)\le\left(\frac{3-a+3-b+3-c}{3}\right)^3=1\)

\(\Leftrightarrow27-9\left(a+b+c\right)+3\left(ab+bc+ca\right)-abc\le1\)

\(\Leftrightarrow abc\ge27-9.6+3\left(ab+bc+ca\right)-1\)

\(\Leftrightarrow2abc\ge-56+6\left(ab+bc+ca\right)\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+2abc\ge3\left(a^2+b^2+c^2\right)+3.2\left(ab+bc+ca\right)-56\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+2abc\ge3\left(a+b+c\right)^2-56\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+2abc\ge3.36-56=\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+2abc\ge52\)

Dấu \("="\) xảy ra khi  \(a=b=c=2\)

Vậy \(3\left(a^2+b^2+c^2\right)+2abc\ge52\)

17 tháng 12 2017

Lớp 8 chưa học bất dẳng thức Cauchy nên mik sẽ ko tính vs lại mik làm đc rồi và cảm ơn nha

20 tháng 2 2018

do a,b,c là 3 cạnh của tam giác nên:

c<a+b  => 2c<a+b+c  => 2c<2  => c<1

Tương tự ta cm được a<1; b<1

vì a<1 => 1-a >0

b<1 => 1-b >0

c<1  => 1-c>0

=>   (1-a)(1-b)(1-c)  > 0

=> 1- (a+b+c) +ab+bc+ac-abc >0

=>ab+ac+bc-1>abc  (a+b+c=0, chuyển vế đổi dấu)

=>2ab+2ac+2bc-2>2abc

Vậy a2+b2+c2+2abc < a2+b2+c2+2ab+2ac+2bc-2= (a+b+c)2-2=4-2=2

Vậy => dpcm

29 tháng 1 2016

Kudo shinichi còn onl ko đó??

29 tháng 1 2016

Vô danh sách bạn bè là biết mà mokona

NV
17 tháng 2 2022

Do a;b;c là 3 cạnh của 1 tam giác

\(\Rightarrow a< b+c\Rightarrow2a< a+b+c=6\Rightarrow a< 3\)

Chứng minh tương tự ta được: \(b< 3;c< 3\)

\(\Rightarrow3-a>0;3-b>0,3-c>0\)

Do đó:

\(\left(3-a\right)\left(3-b\right)\left(3-c\right)\le\left(\dfrac{3-a+3-b+3-c}{3}\right)^3=\left(\dfrac{9-\left(a+b+c\right)}{3}\right)^3=1\)

\(\Leftrightarrow-abc+3\left(ab+bc+ca\right)-9\left(a+b+c\right)+27\le1\)

\(\Leftrightarrow-abc+3\left(ab+bc+ca\right)-27\le1\)

\(\Leftrightarrow abc\ge3\left(ab+bc+ca\right)-28\)

\(\Leftrightarrow2abc\ge6\left(ab+bc+ca\right)-56\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+2abc\ge3\left(a^2+b^2+c^2\right)+6\left(ab+bc+ca\right)-56\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+2abc\ge3\left(a+b+c\right)^2-56=52\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=2\)

NV
17 tháng 2 2022

BĐT vế phải:

Vẫn từ chứng minh trên, \(3-a>0;3-b>0,3-c>0\)

\(\Rightarrow\left(3-a\right)\left(3-b\right)\left(3-c\right)>0\)

\(\Leftrightarrow-abc+3\left(ab+bc+ca\right)-9\left(a+b+c\right)+27>0\)

\(\Leftrightarrow-abc+3\left(ab+bc+ca\right)-27>0\)

\(\Leftrightarrow abc< 3\left(ab+bc+ca\right)-27\)

\(\Leftrightarrow2abc< 6\left(ab+bc+ca\right)-54\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+2abc< 3\left(a^2+b^2+c^2\right)+6\left(ab+bc+ca\right)-54\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+2abc< 3\left(a+b+c\right)^2-54=54\) (đpcm)

20 tháng 11 2016

Áp dụng định lý Pi-ta-go đó 

21 tháng 11 2016

\(a,b,c\) là 3 cạnh của tam giác nên \(a,b,c>0\).
Chứng minh bất đẳng thức phụ 
Giả sử: \(\sqrt{2\left(a^2+b^2\right)}\ge a+b\)
            \(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
            \(\Leftrightarrow a^2+b^2\ge2ab\) ( luôn đúng)

Giả sử: \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)
             \(\Leftrightarrow2\left(a+b+c\right)\le\sqrt{2\left(a^2+b^2\right)}+\sqrt{2\left(b^2+c^2\right)}+\sqrt{2\left(a^2+c^2\right)}\)
Ta có: \(\sqrt{2\left(a^2+b^2\right)}+\sqrt{2\left(b^2+c^2\right)}+\sqrt{2\left(a^2+c^2\right)}\ge a+b+b+c+a+c\)
        \(\Rightarrow\sqrt{2\left(a^2+b^2\right)}+\sqrt{2\left(b^2+c^2\right)}+\sqrt{2\left(a^2+c^2\right)}\ge2\left(a+b+c\right)\)
Vậy: \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\).
Ta chứng minh: \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}< \sqrt{3}\left(a+b+c\right)\)
Áp dụng bất đẳng thức Bu  - nhi - a  ta có:
\(\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{a^2+c^2}\right)^2\le\left(1+1+1\right)\left(a^2+b^2+b^2+c^2+a^2+c^2\right)\)
                                                                                   \(=6\left(a^2+b^2+c^2\right)\)
Ta cần chứng minh: \(6\left(a^2+b^2+c^2\right)< \left(\sqrt{3}\left(a+b+c\right)\right)^2\)
                     \(\Leftrightarrow2\left(a^2+b^2+c^2\right)< \left(a+b+c\right)^2\)
                     \(\Leftrightarrow a^2+b^2+c^2< 2ab+2bc+2ac\)
                     \(\Leftrightarrow\left(a-b\right)^2+c^2< 2bc+2ac\)(1)
Do \(a,b,c\)là 3 cạnh của tam giác suy ra \(a-b< c\)
Gải sử \(a>b\) suy ra \(\left(a-b\right)^2< c^2\)
Thay vào (1 ) ta có \(c^2+c^2< 2bc+2ac\)
                            \(\Leftrightarrow2c^2< 2c\left(a+b\right)\)
                             \(\Leftrightarrow c< a+b\)( Đúng với a, b, c là 3 cạnh của tam giác)
Vậy BĐT đã được chứng minh.

30 tháng 8 2016

Bằng nhau

30 tháng 8 2016

a=b=c=1 suy ra Tam giác ABC là tam giác đều vì có độ dài 3 canh = nhau .

23 tháng 4 2017

có a;b;c là độ dài 3 cạnh 1 tam giác nên theo bđt tam giác ta có:b+c>a \(\Rightarrow\left(b+c\right)^2>a^2\);a+b>c\(\Rightarrow\left(a+b\right)^2>c^2\);

a+c>b\(\Rightarrow\left(a+c\right)^2>b^2\)suy ra \(a\left(b+c\right)^2+b\left(c+a\right)^2+c\left(a^{ }+b\right)^2>a.a^2+b.b^2+c.c^2\)

=\(a^3+b^3+c^3\)

23 tháng 4 2017

bạn ơi lớn hơn bằng mà ;_;