K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2019

Các bạn ơi câu b là bé hơn 2 nhé

26 tháng 5 2022

`@Neo`

\(\dfrac{b}{a+b}+\dfrac{c}{b+c}+\dfrac{a}{c+a}< 2\)

\(\dfrac{b}{a+b}< \dfrac{b+c}{a+b+c}\)

\(\dfrac{a}{c+a}< \dfrac{a+b}{a+b+c}\)

Cộng vế vs vế:

\(\Rightarrow\dfrac{b}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{b+c}{a+b+c}+\dfrac{a+c}{a+b+c}+\dfrac{b+a}{a+b+c}\)

\(=\dfrac{b+c+a+b+b+c}{a+b+c}\)

\(=\dfrac{2\left(a+b+c\right)}{a+b+c}\)

\(=2\)

Vậy kết quả là `2` .

26 tháng 5 2022

Sử dụng tính chất ( tự rút ra) : `a/b < (a+n)/(b+n)` ( `n>0` )
Khi đó thì :
`b/(a+b) < (b+c)/(a+b+c)`
`c/(b+c) < (c+a)/(b+c+a)`
`a/(c+a) < (a+b)/(c+a+b)`
Nên `b/(a+b) +c/(b+c)+a/(c+a)  <  (b+c)/(a+b+c)+(c+a)/(b+c+a)+(a+b)/(c+a+b)`
Ta có :
 `(b+c)/(a+b+c)+(c+a)/(b+c+a)+(a+b)/(c+a+b) = (b+c+c+a+a+b)/(a+b+c) = (2 xx (a+b+c))/(a+b+c) =2`


Vậy `b/(a+b) +c/(b+c)+a/(c+a) <2`

8 tháng 3 2022

Thì \(a,b,c\) khác 0 rồi thì các số kia khác thôi