K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mình đọc chưa hết đề nên làm thiếu, cậu bổ sung nhé:

Thay vào P, ta có:

\(P=2017x+y^{2018}+z^{2019}=2017.\frac{1}{2}+\left(\frac{5}{6}\right)^{2018}+\left(\frac{-5}{6}\right)^{2019}=1008,5+\frac{5^{2018}}{6^{2018}}.\frac{1}{6}=1008,5+\frac{5^{2018}}{6^{2019}}\)

20 tháng 2 2020

điều kiện x,y,z khác 0

ta có \(\frac{y+z+1}{x}=\frac{z+x+2}{y}=\frac{x+y-3}{z}\\ =\frac{y+z+1+z+x+2+x+y-3}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{1}{x+y+z}=2\\ \Rightarrow x+y+z=\frac{1}{2}\\ \Rightarrow y+z=\frac{1}{2}-x\left(1\right)\)

\(\frac{y+z+1}{x}=2\\ \Leftrightarrow y+z+1=2x\)

kết hợp với (1)

\(\frac{1}{2}-x+1=2x\\ \Leftrightarrow2x+x=\frac{1}{2}+1\\ \Leftrightarrow3x=\frac{3}{2}\\ \Leftrightarrow x=\frac{1}{2}\)

mà x + y + z = \(\frac{1}{2} \)

=> y + z = 0

=> y = -z

\(\frac{x+y-3}{z}=2\\ \Leftrightarrow x+y-3=2z\\ \Leftrightarrow y-z=-\frac{5}{2}\)

mà y = -z

=> \(-3z=-\frac{5}{2}\\ \Rightarrow z=\frac{5}{6}\)

=> y = \(-\frac{5}{6}\)

=> \(P=2017.\frac{1}{2}+\left(-\frac{5}{6}\right)^{2018}+\left(\frac{5}{6}\right)^{2019}\)

\(=1008,5+\left(\frac{5}{6}\right)^{2018}+\left(\frac{5}{6}\right)^{2019}\)

10 tháng 3 2020

- Ta có: \(x+y+z=0\)

      \(\Leftrightarrow x+y=-z\)

      \(\Leftrightarrow\left(x+y\right)^2=\left(-z\right)^2\)

      \(\Leftrightarrow x^2+y^2+2xy=z^2\)

      \(\Leftrightarrow x^2+y^2-z^2=-2xy\)

- CMT2\(y^2+z^2-x^2=-2yz\)

             \(z^2+x^2-y^2=-2zx\)

- Thay \(x^2+y^2-z^2=-2xy,\)\(y^2+z^2-x^2=-2yz,\)\(z^2+x^2-y^2=-2zx\)vào đa thức P

- Ta có: \(P=\frac{x^2}{-2yz}+\frac{y^2}{-2zx}+\frac{z^2}{-2xy}\)

     \(\Leftrightarrow P=\frac{x^3+y^3+z^3}{-2xyz}\)

- Đặt \(a=x^3+y^3+z^3\)

- Ta lại có: \(a=\left(x+y\right)^3+z^3-3xy.\left(x+y\right)\)

           \(\Leftrightarrow a=\left(x+y+z\right)^3-3.\left(x+y\right).z.\left(x+y+z\right)-3ab.\left(x+y\right)\)

- Mặt khác: \(x+y+z=0\)

            \(\Leftrightarrow x+y=-z\)

- Thay \(x+y+z=0,\)\(x+y=-z\)vào đa thức a

- Ta có: \(a=-3xy.\left(-z\right)=3xyz\)

- Thay \(a=3xyz\)vào đa thức P

- Ta có: \(P=\frac{3xyz}{-2xyz}=-\frac{3}{2}\)

Vậy \(P=-\frac{3}{2}\)

\(=1\cdot\left(-1\right)+\left(-1\right)^2\cdot2^2+1^3\cdot2^3=8-1+4=11\)

DD
11 tháng 8 2021

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\\x+z+2=2y\\x+y+z=\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=-\frac{5}{6}\end{cases}}\)

\(A=2016x+y^{2017}+z^{2017}=2016.\frac{1}{2}+\left(\frac{5}{6}\right)^{2017}+\left(-\frac{5}{6}\right)^{2017}=1008\)

21 tháng 3 2016
Mk đây mới học lớp 5. Chưa thể làm bài lớp 7 đc đâu. Thôi thì tặng bn bài thơ. Để làm câu trả lời hay nhất nè
6 tháng 3 2022

( x - 1 )2018 + (y - 2 )2020+(z-3)2022=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\\z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)

\(A=\dfrac{1}{9}\left(-x\right)^{2021}y^2z^3=\dfrac{1}{3}\left(-1\right)^{2021}.2^2.3^3=\dfrac{1}{3}.\left(-1\right).4.27=-36\)