\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}-\frac{a^2+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2017

a) 9x2 - 36

=(3x)2-62

=(3x-6)(3x+6)

=4(x-3)(x+3)

b) 2x3y-4x2y2+2xy3

=2xy(x2-2xy+y2)

=2xy(x-y)2

c) ab - b2-a+b

=ab-a-b2+b

=(ab-a)-(b2-b)

=a(b-1)-b(b-1)

=(b-1)(a-b)

P/s đùng để ý đến câu trả lời của mình

27 tháng 12 2018

dễ!Ta có:

\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{b-a+a-c}{\left(a-b\right)\left(a-c\right)}=\frac{b-a}{\left(a-b\right)\left(a-c\right)}+\frac{a-c}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}+\frac{1}{c-a}\)

Chứng minh tương tự,Ta được:

\(\hept{\begin{cases}\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{a-b}+\frac{1}{b-c}\\\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}+\frac{1}{b-c}\end{cases}}\)

\(\Rightarrow\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-a\right)\left(b-c\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=2013\)\(\Rightarrow\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}=\frac{2013}{2}\)

Xong!

1a)

Đặt \(a^2+a+1=t\Rightarrow a^2+a+2=t+1\)

\(\Rightarrow A=t\left(t+1\right)-12=t^2+t-12=t^2-3t+4t-12=\left(t-3\right)\left(t+4\right)\)

\(=\left(a^2+a-2\right)\left(a^2+a+5\right)\)

Mà \(a>1\Rightarrow\hept{\begin{cases}a^2+a-2>0\\a^2+a+5>0\end{cases}}\forall a>1\)

Vậy A là hợp số

1b)

Ta có :

\(B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\cdot...\cdot\left(2^{1006}+1\right)+1\)

\(=\left(2^2-1\right)\left(2^2+1\right)\cdot...\cdot\left(2^{1006}+1\right)+1=....=\left(2^{1006}-1\right)\left(2^{1006}+1\right)+1\)

\(=2^{2012}-1+1=2^{2012}\)

AH
Akai Haruma
Giáo viên
6 tháng 10 2019

Lời giải:

ĐKĐB tương đương với:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Leftrightarrow \frac{a+b}{ab}+\frac{a+b}{c(a+b+c)}=0\)

\(\Leftrightarrow (a+b)\left(\frac{1}{ab}+\frac{1}{c(a+b+c)}\right)=0\Leftrightarrow (a+b).\frac{c(a+b+c)+ab}{abc(a+b+c)}=0\)

\(\Leftrightarrow (a+b).\frac{(c+a)(c+b)}{abc(a+b+c)}=0\)

\(\Leftrightarrow (a+b)(b+c)(c+a)=0\)

Do đó:

\(Q=(a^{27}+b^{27})(b^{41}+c^{41})(c^{2013}+a^{2013})\)

\(=(a+b)X.(b+c)Y.(c+a)Z\)

\(=(a+b)(b+c)(c+a).XYZ=0.XYZ=0\)

15 tháng 8 2015

\(1\text{) }a^3+b^3+c^3=3abc\Leftrightarrow\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

\(\Leftrightarrow a+b+c=0\text{ hoặc }a-b=b-c=c-a=0\)

\(\Leftrightarrow a+b+c=0\text{ hoặc }a=b=c\)

\(\text{+TH1: }a+b+c=0\Rightarrow a+b=-c;\text{ }b+c=-a;\text{ }c+a=-b\)

\(B=\frac{b+a}{a}.\frac{c+b}{c}.\frac{a+c}{b}=\frac{\left(-c\right)\left(-a\right)\left(-b\right)}{abc}=-1\)

\(+\text{TH2: }a=b=c\)

\(B=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

\(2\text{) Ta có: }a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc\)

\(\Rightarrow0=0+3abc\Rightarrow abc=0\)

\(\Rightarrow a=0\text{ hoặc }b=0\text{ hoặc }c=0\)

Không mất tính tổng quát, giả sử c = 0.

\(a+b+c=0\Rightarrow a+b=0\Rightarrow a=-b\)

\(C=\left(-b\right)^{2013}+b^{2013}+0^{2013}=0\)

10 tháng 2 2018

Mẫu của N phải là (a+b+c)^2013 chứ bạn

Đk để phân số tồn tại là : a+b+c khác 0

a^3+b^3+c^3=abc

<=> a^3+b^3+c^3-3abc = 0

<=> (a+b+c).(a^2+b^2+c^2-ab-bc-ca) = 0

<=> a^2+b^2+c^2-ab-bc-ca = 0 ( vì a+b+c khác 0 )

<=> 2a^2+2b^2+2c^2-2ab-2bc-2ca = 0

<=> (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ca+a^2) = 0

<=> (a-b)^2+(b-c)^2+(c-a)^2 = 0

<=> a-b=0 ; b-c=0 ; c-a=0

<=> a=b=c

Khi đó : N = 3a^2013/(3a)^2013 = 3/3^2013 = 1/3^2012

Tk mk nha

29 tháng 11 2019

mik đag cần gấp các bn giải nhanh dùm mik nha

30 tháng 8 2019

Đặt \(\left(\frac{a-b}{c},\frac{b-c}{a},\frac{c-a}{b}\right)\rightarrow\left(x,y,z\right)\)

Khi đó:\(\left(\frac{c}{a-b},\frac{a}{b-c},\frac{b}{c-a}\right)\rightarrow\left(\frac{1}{x},\frac{1}{y},\frac{1}{z}\right)\)

Ta có:

\(P\cdot Q=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3+\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\)

Mặt khác:\(\frac{y+z}{x}=\left(\frac{b-c}{a}+\frac{c-a}{b}\right)\cdot\frac{c}{a-b}=\frac{b^2-bc+ac-a^2}{ab}\cdot\frac{c}{a-b}\)

\(=\frac{c\left(a-b\right)\left(c-a-b\right)}{ab\left(a-b\right)}=\frac{c\left(c-a-b\right)}{ab}=\frac{2c^2}{ab}\left(1\right)\)

Tương tự:\(\frac{x+z}{y}=\frac{2a^2}{bc}\left(2\right)\)

\(=\frac{x+y}{z}=\frac{2b^2}{ac}\left(3\right)\)

Từ ( 1 );( 2 );( 3 ) ta có:
\(P\cdot Q=3+\frac{2c^2}{ab}+\frac{2a^2}{bc}+\frac{2b^2}{ac}=3+\frac{2}{abc}\left(a^3+b^3+c^3\right)\)

Ta có:\(a+b+c=0\)

\(\Rightarrow\left(a+b\right)^3=-c^3\)

\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

Khi đó:\(P\cdot Q=3+\frac{2}{abc}\cdot3abc=9\)

30 tháng 8 2019

Mách mk nốt 2 bài kia vs