\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}\ge a^3+b^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

Áp dụng BĐT Cauchy Shwarz dạng Engel và BĐT AM - GM, ta có:

\(\frac{a^5}{bc}+\frac{b^5}{ac}+\frac{c^5}{ab}\)

\(=\frac{a^6}{abc}+\frac{b^6}{abc}+\frac{c^6}{abc}\)

\(\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\)

\(\ge\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3}\)

\(=a^3+b^3+c^3\left(\text{đ}pcm\right)\)

Dấu "=" xảy ra khi a = b = c

14 tháng 6 2017

\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}=\frac{1}{abc}\left(a^6+b^6+c^6\right)\)

\(\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\ge\frac{3abc\left(a^3+b^3+c^3\right)}{3abc}=a^3+b^3+c^3\)

23 tháng 11 2017

chứng minh \(\sqrt{2x+1}\)là số vô tỉ

22 tháng 9 2020

Đặt đẳng thức là A. Áp dụng bất đẳng thức AM-GM ta có:

\(\sqrt{2b\left(a-b\right)}\le\frac{2b+\left(a+b\right)}{2}=\frac{a+3b}{2}\)

Từ đó: \(A\ge\frac{2a\sqrt{2}}{a+3b}+\frac{2b\sqrt{2}}{b+3c}+\frac{2c\sqrt{2}}{c+3a}\)

Ta sẽ chứng minh: \(M=\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)

Thật vậy, ta có: \(M=\frac{a^2}{a^2+3ab}+\frac{b^2}{b^2+3bc}+\frac{c^2}{c^2+3ca}\)

Theo BĐT AM-GM ta có:

\(ab+bc+ca\le a^2+b^2+c^2\)

Áp dụng BĐT cauchy ta được:

\(M\ge\frac{\left(a+b+c\right)^2}{\frac{4}{3}\left(a^2+b^2+c^2\right)+\frac{8}{3}\left(ab+bc+ca\right)}\)\(=\frac{\left(a+b+c\right)^2}{\frac{4}{3}\left(a+b+c\right)^2}=\frac{3}{4}\)

Vì vậy: \(\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)

Từ đó ta có: \(A\ge\frac{2a\sqrt{2}}{a+3b}+\frac{2b\sqrt{2}}{b+3c}+\frac{2c\sqrt{2}}{c+3a}\ge2\sqrt{2}.\frac{3}{4}=\frac{3\sqrt{2}}{2}\)

Vậy đẳng thức xảy xa khi và chỉ khi a=b=c

8 tháng 12 2020

Đặt \(\frac{ab}{c}=x;\frac{bc}{a}=y;\frac{ca}{b}=z\Rightarrow xy=b^2;yz=c^2;xz=a^2\)

Ta có : \(\hept{\begin{cases}\left(x-y\right)^2\ge o\\\left(y-z\right)^2\ge0\\\left(x-z\right)^2\ge0\end{cases}}\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\ge0\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\)

\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)\ge3\left(xy+yz+xz\right)\)

\(\Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)

\(\Leftrightarrow\sqrt{\left(x+y+z\right)^2}\ge\sqrt{3\left(xy+yz+xz\right)}\)

\(\Leftrightarrow\sqrt{\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\right)^2}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)

\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)( a,b,c là số thực dương ) ( ĐPCM )

7 tháng 12 2020

bạn dung bđt a+b >= 2 căn ab ( cô si )  nhé

cách là ghép từng cặp ở vế trái lại

7 tháng 12 2020

 Ta có: \(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\)

\(=\frac{1}{2}\left(\frac{ab}{c}+\frac{bc}{a}\right)+\frac{1}{2}\left(\frac{bc}{a}+\frac{ca}{b}\right)+\frac{1}{2}\left(\frac{ca}{b}+\frac{ab}{c}\right)\)

\(\ge\frac{1}{2}\cdot2\sqrt{\frac{ab}{c}\cdot\frac{bc}{a}}+\frac{1}{2}\cdot2\sqrt{\frac{bc}{a}\cdot\frac{ca}{b}}+\frac{1}{2}\cdot2\sqrt{\frac{ca}{b}\cdot\frac{ab}{c}}\) (Cauchy)

\(=\frac{1}{2}\cdot2b+\frac{1}{2}\cdot2c+\frac{1}{2}\cdot2a\)

\(=a+b+c\)

Dấu "=" xảy ra khi: a = b = c

30 tháng 9 2016

Bài 1. Từ giả thiết suy ra 1-a = b+c và áp dụng \(\left(x+y\right)^2\ge4xy\) 

Ta có : \(4\left(1-a\right)\left(1-b\right)\left(1-c\right)=4\left(b+c\right)\left(1-c\right)\left(1-b\right)\le\left[\left(b+c\right)+\left(1-c\right)\right]^2\left(1-b\right)\)

\(=\left(b+1\right)^2\left(1-b\right)=\left(b+1\right)\left(1-b^2\right)=-b^2\left(b+1\right)+\left(b+1\right)\le b+1=a+2b+c\)

31 tháng 5 2020

Với a, b, c dương thỏa mãn a + b + c = 3, ta có: \(\Sigma\frac{a}{ab+1}=\Sigma\left(a-\frac{a^2b}{ab+1}\right)\ge3-\Sigma\frac{a^2b}{2\sqrt{ab}}\)

\(=3-\frac{1}{2}\Sigma\sqrt{a^3b}\)

Ta đi chứng minh BĐT phụ sau: \(\left(a^2+b^2+c^2\right)^2\ge3\left(a^3b+b^3c+c^3a\right)\)

Đặt \(\left(a^2+bc-ab;b^2+ca-bc;c^2+ab-ca\right)\rightarrow\left(x;y;z\right)\)

Áp dụng BĐT quen thuộc sau: \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\), ta được:

4cwbKF8.png(*)

(Mình gõ bằng chương trình Universal Math Solver, không hiện ảnh thì vô thống kê hỏi đáp của mình, chiều ngày 31/5/2020)

Khai triển VP của BĐT (*), ta được biểu thức: \(3\left(a^3b+b^3c+c^3a\right)\)

Vậy ta được ​\(\left(a^2+b^2+c^2\right)^2\ge3\left(a^3b+b^3c+c^3a\right)\)

​Áp dụng, ta được: \(\left(a+b+c\right)^2\ge3\left(\sqrt{a^3b}+\sqrt{b^3c}+\sqrt{c^3a}\right)\)

\(\Rightarrow\sqrt{a^3b}+\sqrt{b^3c}+\sqrt{c^3a}\le3\)

\(\Rightarrow3-\frac{1}{2}\left(\sqrt{a^3b}+\sqrt{b^3c}+\sqrt{c^3a}\right)\ge3-\frac{3}{2}=\frac{3}{2}\)

hay \(\frac{a}{ab+1}+\frac{b}{bc+1}+\frac{c}{ca+1}\ge\frac{3}{2}\left(đpcm\right)\)

Đẳng thức xảy ra khi a = b = c = 1

31 tháng 5 2020

tôi yêu đảng / yêu nước việt nam / hồ chí minh muôn năm