Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{a+b}+\dfrac{1}{a+c}+\dfrac{1}{b+c}+\dfrac{1}{b+c}\ge\dfrac{16}{2a+3b+3c}\)
\(\dfrac{1}{b+c}+\dfrac{1}{a+b}+\dfrac{1}{a+c}+\dfrac{1}{a+c}\ge\dfrac{16}{2b+3a+3c}\)
\(\dfrac{1}{a+c}+\dfrac{1}{b+c}+\dfrac{1}{a+b}+\dfrac{1}{a+b}\ge\dfrac{16}{2c+3a+3b}\)
cộng tất cả lại ta được \(4.2017\ge16.\left(\dfrac{1}{2a+3b+3c}+\dfrac{1}{2b+3a+3c}+\dfrac{1}{2c+3a+3b}\right)< =>P\le\dfrac{2017}{4}\)
dấu bằng xảy ra khi \(\left\{{}\begin{matrix}\dfrac{1}{a+b}=\dfrac{1}{b+c}=\dfrac{1}{a+c}\\\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}=2017\end{matrix}\right.< =>\left\{{}\begin{matrix}a=b=c\\\dfrac{3}{2a}=\dfrac{3}{2b}=\dfrac{3}{2c}=2017\end{matrix}\right.< =>a=b=c=\dfrac{3}{4034}}\)
\(ab+bc+ca=3abc\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\) (do a,b,c là các số dương)
Áp dụng BĐT Bunhiacopxki dạng phân thức:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{c}\ge\dfrac{6^2}{a+2b+3c}\)
\(\Rightarrow\dfrac{36}{a+2b+3c}\le\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}\left(1\right)\)
Tương tự: \(\left\{{}\begin{matrix}\dfrac{36}{b+2c+3a}\le\dfrac{1}{b}+\dfrac{2}{c}+\dfrac{3}{a}\left(2\right)\\\dfrac{36}{c+2a+3b}\le\dfrac{1}{c}+\dfrac{2}{a}+\dfrac{3}{b}\left(3\right)\end{matrix}\right.\)
Lấy (1) + (2) + (3) ta được:
\(36F\le6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=6.3=18\)
\(\Rightarrow F\le\dfrac{1}{2}\)
MaxF=1/2 khi \(a=b=c=1\)
Bổ đề :\(\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge9\)
Áp dụng bất đẳng thức Cô-si ta có:
\(x+y+z\ge3\sqrt[3]{xyz};\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge3\sqrt[3]{\dfrac{1}{x}.\dfrac{1}{y}.\dfrac{1}{z}}\)
\(\Rightarrow\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{\dfrac{1}{x}\dfrac{1}{y}\dfrac{1}{z}}=9\)
Dấu "=" xảy ra ⇔ x=y=z
Ta có:\(\dfrac{ab}{a+3b+2c}=\dfrac{ab}{9}.\dfrac{9}{a+3b+2c}\le\dfrac{ab}{9}.\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}+\dfrac{1}{2b}\right)\)
Tương tự ta có:\(\dfrac{bc}{b+3c+2a}\le\dfrac{bc}{9}\left(\dfrac{1}{b+a}+\dfrac{1}{c+a}+\dfrac{1}{2c}\right)\)
\(\dfrac{ca}{c+3a+2b}\le\dfrac{ca}{9}.\left(\dfrac{1}{c+b}+\dfrac{1}{a+b}+\dfrac{1}{2a}\right)\)
Cộng vế với vế ta có:
\(A\le\dfrac{1}{9}.\left(\dfrac{ab+bc}{a+c}+\dfrac{cb+ac}{a+b}+\dfrac{ca+ab}{b+c}+\dfrac{a+b+c}{2}\right)\)
\(=\dfrac{1}{9}.\left(a+b+c+\dfrac{a+b+c}{2}\right)=\dfrac{1}{9}.\left(6+\dfrac{6}{3}\right)=1\)
Dấu "=" xảy ra ⇔ a=b=c=2
Vậy Max A=1⇔ a=b=c=2
Áp dụng bđt \(\dfrac{9}{a+b+c}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Khi đó \(\dfrac{9.ab}{a+3b+2c}=ab.\dfrac{9}{\left(a+c\right)+\left(c+b\right)+2b}\le\dfrac{ab}{a+c}+\dfrac{ab}{c+b}+\dfrac{a}{2}\)
Tương tự và cộng theo vế suy ra \(9A\le\dfrac{3\left(a+b+c\right)}{2}=9< =>A\le1\)
Dấu "=" xảy ra khi và chỉ khi a = b = c = 2
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\text{VT}=\frac{a^3}{2b+3c}+\frac{b^3}{2c+3a}+\frac{c^3}{2a+3b}=\frac{a^4}{2ab+3ac}+\frac{b^4}{2bc+3ba}+\frac{c^4}{2ac+3bc}\)
\(\geq \frac{(a^2+b^2+c^2)^2}{2ab+3ac+2bc+3ba+2ac+3bc}=\frac{(a^2+b^2+c^2)^2}{5(ab+bc+ac)}\)
Theo hệ quả của BĐT AM-GM ta có:
\(a^2+b^2+c^2\geq ab+bc+ac\)
\(\Rightarrow \text{VT}\geq \frac{(a^2+b^2+c^2)(ab+bc+ac)}{5(ab+bc+ac)}=\frac{a^2+b^2+c^2}{5}\)
Ta có đpcm.
Dấu bằng xảy ra khi \(a=b=c\)
\(S=\left(1+\dfrac{2a}{3b}\right)\left(1+\dfrac{2b}{3c}\right)\left(1+\dfrac{2c}{3d}\right)\left(1+\dfrac{2d}{3a}\right)\)
có \(1+\dfrac{2a}{3b}\ge2\sqrt{\dfrac{2a}{3b}}\)(BDT AM-GM)
\(=>1+\dfrac{2b}{3c}\ge2\sqrt{\dfrac{2b}{3c}}\)
\(=>1+\dfrac{2c}{3d}\ge2\sqrt{\dfrac{2c}{3d}}\)
\(=>1+\dfrac{2d}{3a}\ge2\sqrt{\dfrac{2d}{3a}}\)
\(=>S\ge16\sqrt{\dfrac{2a.2b.2c.2d}{3a.3b.3c.3d}}=16\sqrt{\dfrac{16abcd}{81abcd}}=16\sqrt{\dfrac{16}{81}}=\dfrac{64}{9}\)
Áp dụng bất đẳng thức Cauchy-Schwarz:\(\left\{{}\begin{matrix}\dfrac{1}{a+2b+c}+\dfrac{1}{c+3a}\ge\dfrac{\left(1+1\right)^2}{a+2b+c+c+3a}=\dfrac{4}{4a+2b+2c}=\dfrac{2}{c+2a+b}\\\dfrac{1}{b+2c+a}+\dfrac{1}{a+3b}\ge\dfrac{\left(1+1\right)^2}{b+2c+a+a+3b}=\dfrac{4}{4b+2c+2a}=\dfrac{2}{a+2b+c}\\\dfrac{1}{c+2a+b}+\dfrac{1}{b+3c}\ge\dfrac{\left(1+1\right)^2}{c+2a+b+b+3c}=\dfrac{4}{4c+2a+2b}=\dfrac{2}{b+2c+a}\end{matrix}\right.\)
Cộng theo vế ta có:
\(\dfrac{1}{a+2b+c}+\dfrac{1}{c+3a}+\dfrac{1}{b+2c+a}+\dfrac{1}{a+3b}+\dfrac{1}{c+2a+b}+\dfrac{1}{b+3c}\ge\dfrac{2}{c+2a+b}+\dfrac{2}{a+2b+c}+\dfrac{2}{b+2c+a}\)
Hay \(\dfrac{1}{a+2b+c}+\dfrac{1}{b+2c+a}+\dfrac{1}{c+2a+b}\le\dfrac{1}{a+3b}+\dfrac{1}{b+3c}+\dfrac{1}{c+3a}\left(đpcm\right)\)
Áp dụng BĐT Cô si dạng Engel ; ta có :
\(\dfrac{1}{a+2b+c}+\dfrac{1}{c+3a}\ge\dfrac{\left(1+1\right)^2}{\left(a+2b+c\right)+\left(c+3a\right)}=\dfrac{4}{4a+2b+2c}=\dfrac{2}{2a+b+c}\\ \dfrac{1}{b+2c+a}+\dfrac{1}{a+3b}\ge\dfrac{\left(1+1\right)^2}{\left(b+2c+a\right)+\left(a+3b\right)}=\dfrac{4}{4b+2c+2a}=\dfrac{2}{2b+c+a}\\ \dfrac{1}{c+2a+b}+\dfrac{1}{b+3c}\ge\dfrac{\left(1+1\right)^2}{\left(c+2a+b\right)+\left(b+3c\right)}=\dfrac{4}{4c+2a+2b}=\dfrac{2}{2c+a+b}\)
\(\Rightarrow\dfrac{1}{a+2b+c}+\dfrac{1}{b+2c+a}+\dfrac{1}{c+2a+b}+\dfrac{1}{a+3b}+\dfrac{1}{b+3c}+\dfrac{1}{c+3a}\ge\dfrac{2}{a+2b+c}+\dfrac{2}{b+2c+a}+\dfrac{2}{c+2a+b}\\ \Rightarrow\dfrac{1}{a+3b}+\dfrac{1}{b+3c}+\dfrac{1}{c+3a}\ge\dfrac{1}{a+2b+c}+\dfrac{1}{b+2c+a}+\dfrac{1}{c+2a+b}\)