\(a,b,c\) là các số thực dương thỏa mãn \(abc=1.\) Chứng...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2020

\(VT=\frac{1}{\sqrt{abc}}\Sigma_{cyc}\left(\frac{1}{\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{2}{\sqrt{c}}}\right)\le\frac{1}{\sqrt{abc}}\Sigma_{cyc}\left(\frac{\sqrt{a}+\sqrt{b}+2\sqrt{c}}{16}\right)=\frac{1}{\sqrt{abc}}\)

Dấu "=" xay ra khi \(a=b=c=\frac{16}{9}\)

15 tháng 1 2020

Áp dụng BĐT Bunhiacopxky ta có:

\(\left(a^2+2c^2\right)\left(1+2\right)\ge\left(a+2c^2\right)\)

\(\Rightarrow\sqrt{a^2+2c^2}\ge\frac{a+2c}{3}\)

\(\Rightarrow\frac{\sqrt{a^2+2c^2}}{ac}\ge\frac{a+2c}{\sqrt{3ac}}=\frac{ab+2bc}{\sqrt{3abc}}\)

\(\Rightarrow\hept{\begin{cases}\frac{\sqrt{c^2+2b^2}}{bc}\ge\frac{ac+2ab}{\sqrt{3abc}}\\\frac{\sqrt{b^2+2a^2}}{ab}\ge\frac{bc+2ac}{\sqrt{abc}}\end{cases}}\)

Ta được BĐT:

\(VT\ge\frac{1}{3}.\frac{ab+2abc+ac+2ab+bc+2ac}{abc}=\frac{1}{3}.\frac{3\left(ab+bc+ac\right)}{abc}\)

\(=\frac{1}{\sqrt{3}}.\frac{3abc}{abc}=3\)

=> đpcm

P/S: Làm tắt vs đoạn này k^o chắc mấy :V

15 tháng 1 2020

Repair đề \(\Sigma_{cyc}\frac{\sqrt{2a^2+b^2}}{ab}\ge3\sqrt{3}\).Because dấu '=' xảy ra khi \(a=b=c=3\)

Không use condition của đề bài :))

Ta co:

\(VT=\sqrt{\frac{a}{b}+\frac{a}{b}+\frac{b}{a}}+\sqrt{\frac{b}{c}+\frac{b}{c}+\frac{c}{b}}+\sqrt{\frac{c}{a}+\frac{c}{a}+\frac{a}{c}}\)

\(\Rightarrow VT\ge\sqrt{3\sqrt[3]{\frac{a}{b}}}+\sqrt{3\sqrt[3]{\frac{b}{c}}}+\sqrt{3\sqrt[3]{\frac{c}{a}}}\ge3\sqrt[3]{\sqrt{3\sqrt[3]{\frac{a}{b}}.\sqrt{3\sqrt[3]{\frac{b}{c}}.\sqrt{3\sqrt[3]{\frac{c}{a}}}}}}=3\sqrt{3}\)

equelity iff \(a=b=c=3\)

NV
20 tháng 6 2020

Đặt vế trái là P và \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=4\)

Ta cần chứng minh: \(P=\frac{1}{xy+2yz+zx}+\frac{1}{xy+yz+2zx}+\frac{1}{2xy+yz+zx}\le\frac{1}{xyz}\)

\(P=\frac{1}{xy+yz+yz+zx}+\frac{1}{xy+yz+zx+zx}+\frac{1}{xy+xy+yz+zx}\)

\(P\le\frac{1}{16}\left(\frac{1}{xy}+\frac{2}{yz}+\frac{1}{zx}+\frac{1}{xy}+\frac{1}{yz}+\frac{2}{zx}+\frac{2}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)

\(P\le\frac{1}{4}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\frac{1}{4}\left(\frac{x+y+z}{xyz}\right)=\frac{1}{4}.\frac{4}{xyz}=\frac{1}{xyz}\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=\frac{4}{3}\) hay \(a=b=c=\frac{16}{9}\)

20 tháng 5 2021

Các bạn chuyển \(1c^2\) thành \(2c^2\) cho mk nha

3 tháng 2 2021

Ta có: \(\left(a^4-a^3+2\right)-\left(a+1\right)=\left(a-1\right)^2\left(a^2+a+1\right)\ge0\)\(\Rightarrow a^4-a^3+2\ge a+1\Leftrightarrow a^4-a^3+ab+2\ge ab+a+1\)

\(\Rightarrow\frac{1}{\sqrt{a^4-a^3+ab+2}}\le\frac{1}{\sqrt{ab+a+1}}\)

Tương tự:\(\frac{1}{\sqrt{b^4-b^3+bc+2}}\le\frac{1}{\sqrt{bc+b+1}}\)\(\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\frac{1}{\sqrt{ca+c+1}}\)

\(\Rightarrow VT\le\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\)\(\le\sqrt{3\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)}\)\(\le\sqrt{3\left(\frac{c}{abc+ac+c}+\frac{ac}{abc^2+abc+ac}+\frac{1}{ca+c+1}\right)}\)\(\le\sqrt{3\left(\frac{c}{ac+c+1}+\frac{ac}{ac+c+1}+\frac{1}{ca+c+1}\right)}=\sqrt{3}\)(abc = 1)

Đẳng thức xảy ra khi a = b = c = 1

25 tháng 10 2019

Chú ý: \(2a^2+ab+2b^2=\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{5}{4}\left(a+b\right)^2\) là ok liền:D

30 tháng 6 2020

Mấy bạn ơi , cho tớ hỏi:

Luật tính điểm hỏi đáp là gì?
Làm thế nào để câu trả lời của mình đứng đầu tiên trong các câu trả lời?

Ai trả lời nhanh mình tích cho.
 

14 tháng 11 2017

ta có \(\sqrt{\frac{ab+2c^2}{1+ab-c^2}}=\frac{ab+2c^2}{\sqrt{1+ab-c^2}.\sqrt{ab+2c^2}}=\frac{ab+2c^2}{\sqrt{1+ab-c^2}\sqrt{ab+2c^2}}\)

Áp dụng bất đẳng thức cô si ta có 

\(\sqrt{ab+1-c^2}\sqrt{ab+2c^2}\le\frac{1}{2}\left(ab+1-c^2+ab+2c^2\right)=\frac{1}{2}\left(2ab+1+c^2\right)\) 

=\(\frac{1}{2}\left(2ab+a^2+b^2+2c^2\right)=\frac{1}{2}\left[\left(a+b\right)^2+2c^2\right]\le\frac{1}{2}\left(2a^2+2b^2+2c^2\right)=\left(a^2+b^2+c^2\right)\) =1

=> \(\frac{ab+2c^2}{...}\ge\frac{ab+2c^2}{1}=2c^2+ab\)

tương tự + vào thì e sẽ ra điều phải chứng minh

22 tháng 4 2020

Nhà hàng Tôm hùm kính chào quý khách ĐC : 255 Nguyễn Huệ, Q tân bình , TP HCM

21 tháng 5 2020

Ta có: \(ab+bc+ca+abc=4\)

\(\Leftrightarrow abc+2\left(ab+bc+ca\right)+4\left(a+b+c\right)+8\)\(=12+\left(ab+bc+ca\right)+4\left(a+b+c\right)\)

\(\Leftrightarrow\left(a+2\right)\left(b+2\right)\left(c+2\right)\)\(=\left(a+2\right)\left(b+2\right)+\left(b+2\right)\left(c+2\right)+\left(c+2\right)\left(a+2\right)\)

\(\Leftrightarrow\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=1\Leftrightarrow\frac{2}{a+2}+\frac{2}{b+2}+\frac{2}{c+2}=2\)

\(\Leftrightarrow3-\left(\frac{2}{a+2}+\frac{2}{b+2}+\frac{2}{c+2}\right)=1\)\(\Leftrightarrow\frac{a}{a+2}+\frac{b}{b+2}+\frac{c}{c+2}=1\)

Đặt \(x=\frac{a}{a+2};y=\frac{b}{b+2};z=\frac{c}{c+2}\). Khi đó x + y + z = 1 và \(\frac{1}{x}=\frac{a+2}{a}=1+\frac{2}{a}\)

\(\Rightarrow\frac{2}{a}=\frac{1}{x}-1=\frac{1-x}{x}=\frac{y+z}{x}\Rightarrow a=\frac{2x}{y+z}\)

Hoàn toàn tương tự, ta có: \(b=\frac{2y}{z+x};c=\frac{2z}{x+y}\)

Lúc đó bất đẳng thức cần chứng minh trở thành:

\(\sqrt{\frac{2x}{y+z}.\frac{2y}{z+x}}+\sqrt{\frac{2y}{z+x}.\frac{2z}{x+y}}+\sqrt{\frac{2z}{x+y}.\frac{2x}{y+z}}\le3\)

\(\Leftrightarrow2\sqrt{\frac{x}{y+z}.\frac{y}{z+x}}+2\sqrt{\frac{y}{z+x}.\frac{z}{x+y}}+2\sqrt{\frac{z}{x+y}.\frac{x}{y+z}}\le3\)

Theo BĐT AM - GM, ta có: \(2\sqrt{\frac{x}{y+z}.\frac{y}{z+x}}\le\frac{y}{y+z}+\frac{x}{z+x}\)(1)

Tương tự: \(2\sqrt{\frac{y}{z+x}.\frac{z}{x+y}}\le\frac{z}{z+x}+\frac{y}{x+y}\)(2) ;\(2\sqrt{\frac{z}{x+y}.\frac{x}{y+z}}\le\frac{x}{x+y}+\frac{z}{y+z}\)(3)

Cộng theo vế của (1), (2), (3), ta được: \(2\sqrt{\frac{x}{y+z}.\frac{y}{z+x}}+2\sqrt{\frac{y}{z+x}.\frac{z}{x+y}}+2\sqrt{\frac{z}{x+y}.\frac{x}{y+z}}\)\(\le\left(\frac{x}{x+y}+\frac{y}{x+y}\right)+\left(\frac{y}{y+z}+\frac{z}{y+z}\right)+\left(\frac{z}{z+x}+\frac{x}{z+x}\right)=3\)

Vậy bài toán được chứng minh

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)hay a = b = c = 1.

21 tháng 5 2020

Đặt \(a=\frac{1}{x},\text{ }b=\frac{1}{y},\text{ }c=\frac{1}{z}\Rightarrow x+y+z+1=4xyz\Leftrightarrow r=\frac{p+1}{4}\)

Cần chứng minh: \(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\le3\)

\(\Leftrightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\le3\sqrt{xyz}\)

\(\Leftrightarrow x+y+z+2\Sigma\sqrt{xy}\le9xyz\)

\(\Leftrightarrow4\left(p+2\Sigma\sqrt{xy}\right)\le9\left(p+1\right)\)

\(\Leftrightarrow8\Sigma\sqrt{xy}\le5p+9\) (1)

Ta có: \(t^2+u^2+v^2+2tuv+1\ge2\left(tu+uv+tv\right)\) (quen thuộc, trên mạng chắc có)

Vì vậy: \(x+y+z+2\sqrt{xyz}+1\ge2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\) 

Hay là: \(4\left(p+2\sqrt{xyz}+1\right)\ge8\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\) (2)

Từ (1) và (2) ta chứng minh: \(4\left(p+2\sqrt{r}+1\right)\le5p+9\)

\(\Leftrightarrow4p+4\sqrt{\left(p+1\right)}+4\le5p+9\)

\(\Leftrightarrow\left(p-3\right)^2\ge0\). Xong.

30 tháng 12 2017

Áp dụng bđt : x^2+y^2+z^2 >= (x+y+z)^2/3 ta có :

\(\frac{\sqrt{b^2+2a^2}}{ab}\)\(\frac{\sqrt{a^2+b^2+a^2}}{ab}\)>= \(\frac{\sqrt{\frac{\left(a+b+a\right)^2}{3}}}{ab}\) = \(\frac{2a+b}{\sqrt{3}ab}\) = \(\frac{2}{\sqrt{3}b}+\frac{1}{\sqrt{3}a}\)

Tương tự : \(\frac{\sqrt{c^2+2b^2}}{bc}\)>= \(\frac{2}{\sqrt{3}c}+\frac{1}{\sqrt{3}b}\) ;    \(\frac{\sqrt{a^2+2c^2}}{ac}\)>= \(\frac{2}{\sqrt{3}a}+\frac{1}{\sqrt{3}c}\)

=> \(\frac{\sqrt{b^2+2a^2}}{ab}\)\(\frac{\sqrt{c^2+2b^2}}{bc}\)\(\frac{\sqrt{a^2+2c^2}}{ac}\)>= \(\frac{3}{\sqrt{3}a}+\frac{3}{\sqrt{3}b}+\frac{3}{\sqrt{3}c}\)

\(\frac{3}{\sqrt{3}}\).(1/a+1/b+1/c) = \(\sqrt{3}\).(ab+bc+ca)/abc = \(\sqrt{3}\).abc/abc = \(\sqrt{3}\)

Dấu "=" xảy ra <=> a=b=c=3

=> ĐPCM

k mk nha

30 tháng 12 2017

thanks thiên tai nhá!